
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045

AUTHOR(S): REPQ 1

Supplementary material
RepQ: Generalizing Quantization-Aware
Training for Re-Parametrized Architectures

BMVC 2023 Submission # 311

In supplementary material, we provide two sections. The first one is devoted to the
description of how we select hyperparameters for various algorithms and the motivation
behind this selection. The second one provides a derivation of our approximate form of
Batch Normalization (BN).

S1 Experimental setup
We have reproduced the results of the Floating-Point (FP) models using official repositories1,
except for AC-ResNet-18, which we implemented from scratch in TensorFlow. To ensure
reproducibility, we provide the exact hyperparameters used for all experiments in Table S1.
We maintain the same number of epochs, batch size, loss function, optimizer, weight decay,
and schedule for quantized training as in the FP training. We only modify a Learning Rate
(LR). We reduced the LR by a factor of ten for the Quantization-Aware Training (QAT)
stage in comparison with FP training LR for the classification models. The RepQ method
and the baselines are trained using the same LR, except for the Merged 8-bit quantization
baseline. For it, we additionally reduced LR since it benefited the quality. For instance, the
8-bit RepVGG-A0 Merged baseline achieves a 68.65 accuracy with a LR of 0.01 and a 69.21
accuracy with a LR of 0.001.

Additional quantization parameters, referred to as steps, are introduced in [1]. We use
independent steps for each channel of a weight tensor [2]. We adjust the ResNet-18 steps’
LR to ensure training stability. For example, with steps’ LR of 0.01, the 4-bit OREPA-
Resnet-18 model converges to an accuracy of 65.49, and with steps’ LR of 0.001, it achieves
an accuracy of 71.49.

All aforementioned LR adjustments are displayed in Table S1.
We deliberately chose not to modify hyperparameters other than the LR to facilitate a

fair comparison between the proposed methods and the baselines. Selecting optimal hy-
perparameters for each experiment can be challenging and resource-intensive. However,
quantized models can sometimes benefit from certain hyperparameter fine-tuning. For in-
stance, reducing the weight decay by a factor of two for the 4-bit OREPA-Resnet-18 model
improves its quality from 71.49 to 72.15.

For 4-bit quantization, it is a common practice to keep the weights or inputs of the first
and last layers in 8-bit, as these layers are more sensitive to quantization. In the case of 4-bit

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1Links to official repositories that we used: ECBSR, OREPA, RepVGG.

Citation
Citation
{Esser, McKinstry, Bablani, Appuswamy, and Modha} 2020

Citation
Citation
{Li, Shen, Ma, Ren, Zhao, Zhang, Gong, Yu, and Yan} 2021

https://github.com/xindongzhang/ECBSR
https://github.com/JUGGHM/OREPA_CVPR2022
https://github.com/DingXiaoH/RepVGG


046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091

2 AUTHOR(S): REPQ

ECBSR and OREPA-Resnet-18, we keep the first and last layers fully 8-bit. For AC-Resnet-
18, only the first layer is 8-bit, while for RepVGG, only the input of the first layers is 8-bit.
Although there is a slight inconsistency in the configurations of different models, it does not
affect the comparison of the methods and the resulting conclusions.

For BNEst experiments, we replace BN layers with BN estimation layers on both FP
and QAT stages. For ResNet-18, we leave two last layers with BN due to the edge effect
described in Section S2 and replace BN with BN estimation in all other layers.

Regarding model selection, we report the highest quality achieved on the ImageNet vali-
dation set during training for the classification models. For ECBSR, we report the results of
the last checkpoint since this model is tested on multiple test sets.

Model
RepVGG-A0 &

RepVGG-B0
AC-Resnet-18 OREPA-Resnet-18 ECBSR

Epochs 120 100 120 1000
Batch size 256 256 256 32

Loss
Cross entropy

+ label smoothing 0.1
Cross entropy Cross entropy MAE

Optimizer
SGD

momentum 0.9
SGD

momentum 0.9
SGD

momentum 0.9
Adam

Schedule
Cosine +
5 epochs

linear warmup
Cosine

Cosine +
5 epochs

linear warmup
Constant

Weight decay 0.0001 0.0001 0.0001 0.0
FP models’ LR 0.1 0.1 0.1 0.0005

Quantized
models’ LR

0.01 0.01 0.01 0.0005

Merged 8-bit
models’ LR

0.001 0.001 0.001 0.0005

8-bit steps’ LR 0.01 0.0001 0.0001 0.0005
4-bit steps’ LR 0.01 0.001 0.001 0.0005

Table S1: Hyperparameters’ setup.

S2 Batch Normalization Estimation
Here we derive the Batch Normalization Estimation formulas provided in Section 4.3.

Let’s introduce notation. Consider an arbitrary convolution operation, denoted as X ∗W ,
where X is the input tensor with shape [B,H,D, IN], and W is the weight tensor with shape
[Kh,Kw, IN,OUT ]. In this notation, B represents the batch size, H is the height of the feature
map, D is the width of the feature map, Kh is the height of the weight tensor, Kw is the width
of the weight tensor, IN is the number of input channels, and OUT is the number of output
channels.

We define a flattening operator, denoted as F , which reshapes the tensor X from shape
[B,H,D, IN] to shape [B ·H ·D, IN].

Using this notation, we can express the convolution operation as a sum of several matrix
multiplications,

(X ∗W )F = ∑
0⩽i<Kh
0⩽ j<Kw

X [, i : H −Kh +1+ i, j : D−Kw +1+ j, ]FWi, j. (S1)



092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

AUTHOR(S): REPQ 3

The notation [i : j; . . .] represents a slicing operator commonly used in Python to extract
specific elements from an array or tensor. Wi, j =W [i, j] is a matrix of shape [IN,OUT ]. This
decomposition is convenient for further deductions.

We define E as an operator that computes the sample mean over the batch, height and
width dimensions of the tensor. E is defined for the flattened input similarly, so that E

[
XF

]
=

E
[
X
]
. The resulting tensor will have a shape [OUT, ]. Similarly, the operator V calculates the

sample variance over the same batch, height, and width dimensions. These statistics, denoted
as E and V, are essential components used in regular Batch Normalization techniques.

With these notations and operators defined, we can now proceed to derive the estimations
for Batch Normalization statistics for arbitrary convolutions, starting with the mean,

E
[
X ∗W

]
= E

[
(X ∗W )F

]
=

E
[

∑
0⩽i<Kh
0⩽ j<Kw

X [, i : H −Kh +1+ i, j : D−Kw +1+ j, ]FWi, j

]
=

= ∑
0⩽i<Kh
0⩽ j<Kw

E
[
X [, i : H −Kh +1+ i, j : D−Kw +1+ j, ]

]
Wi, j.

(S2)

We can make the assumption that E
[
X [, i : H −Kh +1+ i, j : D−Kw +1+ j, ]

]
≈ E

[
X
]
,

which implies that we can neglect the pixels near the edges of the feature map. This approx-
imation error remains small when the weight tensor’s shape is much smaller than the height
and width of the feature maps, Kh ≪ H, and Kw ≪ D. In many networks, this condition
holds true. For example, in state-of-the-art models, the ImageNet input image is regularly
reshaped into 224x224, while the weights are typically 3x3 for most layers. However, it is
worth noting that the height and width of the feature maps may be significantly reduced in
the last layers, which can lead to less accurate estimates. That is why for ResNet-18 BNEst
experiments, we left two last layers to use regular BN.

By employing this approximation, we can proceed to deduce the final mean estimate,

E
[
X ∗W

]
≈ Ẽ

[
X ∗W

]
= ∑

0⩽i<Kh
0⩽ j<Kw

E
[
X
]
Wi, j = E

[
X
]

∑
0⩽i<Kh
0⩽ j<Kw

Wi, j. (S3)

Similarly, we provide equations for estimating the variance,

V
[
X ∗W

]
= V

[
(X ∗W )F

]
=

V
[

∑
0⩽i<Kh
0⩽ j<Kw

X [, i : H −Kh +1+ i, j : D−Kw +1+ j, ]FWi, j

]
. (S4)

We further assume that the variance of the sum is approximately equal to the sum of the
variances,

V
[
X ∗W

]
≈ ∑

0⩽i<Kh
0⩽ j<Kw

V
[
X [, i : H −Kh +1+ i, j : D−Kw +1+ j, ]FWi, j

]
.

(S5)



138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

4 AUTHOR(S): REPQ

Using equation (4) from the article,

V
[
X ∗W

]
≈ ∑

0⩽i<Kh
0⩽ j<Kw

V
[
X [, i : H −Kh +1+ i, j : D−Kw +1+ j, ]

]
W 2

i, j. (S6)

Similarly to E, we neglect the edge effect, assuming,

V
[
X [, i : H −Kh +1+ i, j : D−Kw +1+ j, ]

]
≈ V

[
X
]
. (S7)

We get the final variance estimate,

V
[
X ∗W

]
≈ Ṽ

[
X ∗W

]
= V

[
X
]

∑
0⩽i<Kh
0⩽ j<Kw

W 2
i, j. (S8)

References
[1] Steven K Esser, Jeffrey L McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and

Dharmendra S Modha. Learned Step Size Quantization. In Proceedings of the Interna-
tional Conference on Learning Representations, 2020.

[2] Yuhang Li, Mingzhu Shen, Jian Ma, Yan Ren, Mingxin Zhao, Qi Zhang, Ruihao Gong,
Fengwei Yu, and Junjie Yan. MQBench: Towards reproducible and deployable model
quantization benchmark. In Proceedings of the Conference on Neural Information Pro-
cessing Systems, 2021.


