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1 Introduction
Our supplementary material includes the following discussions / evaluations:

• Detail description of the dataset used in this paper is provided in Section 2.

• Section 3 discusses the t-SNE [18] visualization in more details for base and new
classes separately for SLIP, CoCoOp and GOPRO on Eurosat dataset.

• In section 4, we present the detailed results for base-to-new generalization task and
compare the performance of our proposed GOPRO and the referred SOTA prompting
techniques.

• We also discuss the performances of the prompting methods with variation of number
of shots and prompt initialization strategy in Section 4.

• Comparison of GFlops for the proposed GOPRO with the SOTA methods i.e. CoOp
[22], CoCoOp [21], MaPLe [8] and STYLIP [1], discussed in Section 5.

2 Dataset Description
We evaluate GOPRO over 11 benchmark dataset for base-to-new and cross-dataset general-
ization, which are described as follows: (1) ImageNet [10] - Itconsists of approximately 1.2
million labeled images, from 1,000 different object categories, with high-quality and diverse
collection of samples. It covers a wide range of object categories, including animals, plants,
vehicles, everyday objects, and various concepts. (2) Caltech101 [4] - It comprises images
from 101 object categories, having 40 to 800 images with resolution of 300×200 pixels in
each class. The images are of varying sizes and resolutions, capturing different viewpoints,
lighting conditions, and object variations. (3) OxfordPets [14] - It contains images from 37
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different pet breeds, with each breed having a varying number of images. The total num-
ber of images in this dataset is around 7,000. The images are typically high-resolution and
showcase various poses and backgrounds. (4) StanfordCars [9] - It contains images of cars
from 196 different classes or car models, ranging from sedans and SUVs to sports cars and
luxury vehicles. Each class typically consists of around 100 to 200 images, resulting in a to-
tal of approximately 16,185 images. (5) Flowers102 [13] - It contains images from various
flower species, including roses, sunflowers, daisies, tulips, and many more, depicting 102
different categories. Each category typically contains around 40 to 258 images, resulting
in a total of approximately 8,189 images in the dataset. (6) Food101 [2] - It contains im-
ages from 101 different food categories, including dishes like sushi, pizza, burgers, desserts,
and many more. Each category typically contains around 1,000 images, resulting in a total
of approximately 101,000 images in the dataset. The images showcase different cuisines,
cooking styles, and food presentations. (7) FGVCAircraft [11] - It comprises images from
100 different aircraft classes, covering a wide range of aircraft types including airplanes,
helicopters, and drones. Each class typically contains around 100 to 800 images, resulting
in a total of approximately 10,200 images in the dataset. The images showcase different
viewpoints, lighting conditions, and variations within each aircraft class. (8) SUN397 [20]
- It contains images from 397 different scene categories, encompassing a wide range of in-
door and outdoor scenes such as bedrooms, offices, forests, beaches, and city streets. Each
category typically contains around 100 to 500 images, resulting in a total of approximately
108,754 images in the dataset. The images showcase different perspectives, lighting con-
ditions, and variations within each scene category. (9) UCF101 [17] - It contains middle
frames of videos from 101 different action categories, covering a wide range of activities
such as sports, dance, martial arts, playing musical instruments, and more. Each category
typically contains around 100 to 180 frames, resulting in a total of approximately 13,320
images in the dataset. These are captured in different viewpoints, lighting conditions, and
variations within each action category. (10) DTD [3] - It contains images from 47 differ-
ent texture classes, including textures such as fabric, wood, metal, brick, and many more.
Each class typically contains around 120 to 180 images, resulting in a total of approximately
5,640 images in the dataset. The images capture different scales, lighting conditions, and
variations within each texture class., and (11) EuroSAT [5] - It contains images captured by
the Sentinel-2 satellite, covering different regions of Europe. It consists of 10 different land
use and land cover classes, including urban areas, agricultural land, forests, meadows, and
more. Each class contains approximately 2,000 high-resolution images, resulting in a total
of around 27,000 images in the dataset.

For single-source multi-targe (SSMT) domain generalization, four variants of ImageNet
are used. (1) ImageNetV2 [16] - It contains of 10000 images, 10 images for each of the
1000 ImageNet classes . (2) ImageNet-Sketch [19] - It consists of approx 50000 sketch
images from 1000 ImageNet categories. (3) ImageNet-A [7] - It contains images from
200 ImageNet categories including real-world, unmodified, and naturally occurring samples,
with total number of 7,500 images. (4) ImageNet-R [6] - It encompasses various artistic
renditions and interpretations of ImageNet classes, including artwork, cartoons, deviantart
creations, graffiti, embroidery, graphics, origami, paintings, patterns, plastic objects, plush
objects, sculptures, sketches, tattoos, toys, and video game representations. It focuses on 200
specific ImageNet classes and consists of a total of 30,000 images. These images showcase
the diverse ways in which the classes can be visually depicted in different artistic mediums.

.
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CoCoOp: New 60.04

GOPro: Base 94.92 (Actual)

GOPro: New 76.27 (Actual)

SLIP: Base 56.43 GOPro: Base 94.92 (Augmented)

GOPro: New 76.27 (Augmented)

CoCoOp: Base 87.49

SLIP: New 63.79

Figure 1: The t-SNE visualizations of visual embeddings from SLIP, CoCoOp and our pro-
posed GOPRO, on the base and new classes of Eurosat dataset. GOPRO archives better
discriminativeness.

3 t-SNE Visualization
We have shown a detailed t-SNE [18] visualization of the image embeddings in Figure 1,
generated by the visual features of the original and augmented images in both of the base
and new classes for the B2N generalization task. . We take SLIP [12] and CoCoOp [21] for
comparison on the EuroSAT dataset. The visualization shows that the clusterings are better
in base classes, rather than new classes. However, GOPRO gives better clustering of each
class, while the cluster points of many classes get overlapped in CoCoOp.

4 Additional Results
Base-to-New (B2N) class generalization: In Table 1, we have shown the detailed results of
our proposed GOPRO and other prompting techniques on 11 datasets for B2N generaliza-
tion task. GOPRO is very much successful to beat others on each and every datasets while
considering the harmonic mean (HM) of base and new classes. It is important to notice that
GOPRO has shown significant performance in one of the most fine-grained dataset FGVC-
Aircraft and outperforms others by at least of 0.38% of margin.
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GFLOPS

CoOp

CoCoOp

MaPLe

STYLIP

GOPro

166.50 166.75 167.00 167.25 167.50 167.75

Figure 2: Comparison of the computational complexity of GOPRO among different prompt-
ing methods in terms of GFLOPS.

Table 1: Comparison with state-of-the-art methods on base-to-new generalization. GOPRO
shows better generalization performance over existing methods on 11 different recognition
datasets on 16-shots with context length, M=4. HM represents the harmonic mean.

(a) Average over 11 datasets (b) ImageNet (c) Caltech101
Method Base New HM Method Base New HM Method Base New HM
CLIP [15] 69.34 74.22 71.70 CLIP [15] 72.43 68.14 70.22 CLIP [15] 96.84 94.00 95.40
SLIP [12] 69.77 74.28 71.96 SLIP [12] 72.95 69.76 71.32 SLIP [12] 96.97 94.05 95.49
CoOp [22] 82.69 63.22 71.66 CoOp [22] 76.47 67.88 71.92 CoOp [22] 98.00 89.81 93.73
CoCoOp [21] 80.47 71.69 75.83 CoCoOp [21] 75.98 70.43 73.10 CoCoOp [21] 97.96 93.81 95.84
MaPLe [8] 82.28 75.14 78.55 MaPLe [8] 76.66 70.54 73.47 MaPLe [8] 97.74 94.36 96.02
STYLIP [1] 83.22 75.94 79.41 STYLIP [1] 77.15 71.34 74.13 STYLIP [1] 98.23 94.91 96.54
GOPRO 84.21 77.32 80.62 GOPRO 78.56 73.22 75.80 GOPRO 98.86 95.78 97.30

(d) OxfordPets (e) StanfordCars (f) Flowers102
Method Base New HM Method Base New HM Method Base New HM
CLIP [15] 91.17 97.26 94.12 CLIP [15] 63.37 74.89 68.65 CLIP [15] 72.08 77.80 74.83
SLIP [12] 91.23 97.04 94.05 SLIP [12] 63.52 74.92 68.75 SLIP [12] 72.17 77.87 74.91
CoOp [22] 93.67 95.29 94.47 CoOp [22] 78.12 60.40 68.13 CoOp [22] 97.60 59.67 74.06
CoCoOp [21] 95.20 97.69 96.43 CoCoOp [21] 70.49 73.59 72.01 CoCoOp [21] 94.87 71.15 81.71
MaPLe [8] 95.43 97.76 96.58 MaPLe [8] 72.94 74.00 73.47 MaPLe [8] 95.92 72.46 82.56
STYLIP [1] 95.96 98.14 97.04 STYLIP [1] 75.19 74.46 74.82 STYLIP [1] 96.54 73.08 83.19
GOPRO 96.36 98.49 97.41 GOPRO 77.59 75.35 76.45 GOPRO 97.73 77.91 86.70

(g) Food101 (h) FGVCAircraft (i) SUN397
Method Base New HM Method Base New HM Method Base New HM
CLIP [15] 90.10 91.22 90.66 CLIP [15] 27.19 36.29 31.09 CLIP [15] 69.36 75.35 72.23
SLIP [12] 90.14 91.27 90.70 SLIP [12] 27.49 36.11 31.22 SLIP [12] 69.35 75.39 72.24
CoOp [22] 88.33 82.26 85.19 CoOp [22] 40.44 22.30 28.75 CoOp [22] 80.60 65.89 72.51
CoCoOp [21] 90.70 91.29 90.99 CoCoOp [21] 33.41 23.71 27.74 CoCoOp [21] 79.74 76.86 78.27
MaPLe [8] 90.71 92.05 91.38 MaPLe [8] 37.44 35.61 36.50 MaPLe [8] 80.82 78.70 79.75
STYLIP [1] 91.20 92.48 91.84 STYLIP [1] 37.65 35.93 36.77 STYLIP [1] 82.12 79.95 81.02
GOPRO 92.37 93.56 92.96 GOPRO 37.89 36.44 37.15 GOPRO 81.94 81.64 81.79

(j) DTD (k) EuroSAT (l) UCF101
Method Base New HM Method Base New HM Method Base New HM
CLIP [15] 53.24 59.90 56.37 CLIP [15] 56.48 64.05 60.03 CLIP [15] 70.53 77.50 73.85
SLIP [12] 56.71 59.30 57.98 SLIP [12] 56.43 63.79 59.88 SLIP [12] 70.55 77.56 73.89
CoOp [22] 79.44 41.18 54.24 CoOp [22] 92.19 54.74 68.69 CoOp [22] 84.69 56.05 67.46
CoCoOp [21] 77.01 56.00 64.85 CoCoOp [21] 87.49 60.04 71.21 CoCoOp [21] 82.33 73.45 77.64
MaPLe [8] 80.36 59.18 68.16 MaPLe [8] 94.07 73.23 82.35 MaPLe [8] 83.00 78.66 80.77
STYLIP [1] 81.57 61.72 70.27 STYLIP [1] 94.61 74.06 83.08 STYLIP [1] 85.19 79.22 82.10
GOPRO 82.41 62.95 71.38 GOPRO 94.92 76.27 84.58 GOPRO 87.67 78.91 83.06

Sensitivity to the variation in the number of shots: We evaluate the performance of our
proposed GOPRO on the base-to-new class generalization task, varying the number of shots
from 1 to 16 and taking all training samples from every base class. Table 2 compares our re-
sults with state-of-the-art prompting techniques. For this evaluation, we use a context length
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(M) of 4 and ViT-B/16 as the visual feature backbone, by placing the class token at the end
and utilizing a unified context vector. Since CLIP is a zero-shot approach, we exclude it
and focus on few-shot-based prompting methods. We present our results as harmonic mean
(HM) of base and new classes on average over 11 datasets. Our GOPRO consistently out-
performs benchmark prompt learning-based methods by a minimum margin of 0.2%, 0.5%,
2.3%, 1.2% and 1.2% for 1, 2, 4, 8, 16 shots and all training samples, respectively.

Table 2: Comparison of GOPRO with state-of-the-art methods on varying the number of
shots for the B2N class generalization task on average of 11 datasets. We choose harmonic
mean (H) of base and new classes for comparison, as well as to depict the generalization
trade-off.

Method 1-shot 2-shot 4-shot 8-shot 16-shot All
CoOp 67.14 67.32 68.28 69.33 71.66 0.36in71.89
CoCoOp 70.67 71.94 72.45 74.22 0.36in75.83 75.36
STYLIP 73.98 74.46 75.57 78.86 0.36in79.41 79.25
GOPRO 74.17 74.95 77.84 79.31 80.62 80.48

Sensitivity to the prompt initialization strategy: In Table 3, we examine the effective-
ness of three distinct prompt initialization strategies for single-source multi-target (SSMT)
domain generalization. The results emphasize that manual initialization using "a photo
of a" surpasses random initialization and no initialization strategies significantly for all the
target datasets, except ImageNetV2 and ImageNet-R. However, manual initialization outper-
forms other strategies in the evaluation of the source domain i.e. ImageNet dataset.

Table 3: Comparison of GOPRO with the prompt benchmark methods for domain general-
ization across datasets. We train the model on ImageNet using 16-shots with CLIP ViT-B/16
and test on 4 other datasets.

Source TargetMethod ImageNet ImageNetV2 ImageNet-Sketch ImageNet-A ImageNet-R
random initilization 72.89 66.03 49.34 51.96 78.24
without initialization 71.56 63.44 49.10 48.62 77.92
manual initialization 73.27 65.35 50.36 52.23 78.02

5 Computational Complexity
We run our model on NVIDIA RTX A6000 GPU with 48 GB card. Fig. 2 represents the
comparison of computational complexity between different prompting techniques (CoOp
[22], CoCoOp [21], MaPLe [8] and STYLIP [1]) in terms of GFLOPS. MaPLe and STYLIP
require 0.12% and 0.3% more computational overhead than CoCoOp respectively, whereas
GOPRO needs 0.24%, 0.42% and 0.54% more resources than STYLIP, MaPLe and Co-
CoOp. However, GOPRO outperforms well the state-of-the-art methods on all of the three
generalization tasks i.e. base-to-new, cross-dataset and domain generalization by smart mar-
gins.
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