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Overview Related Works & Limitations

Ay

< Design X-PDNet, a multitask learning framework for
joint plane instance segmentation and monocular
depth estimation.

< Propose a novel Depth-Guided Boundary Preserving
Loss that uses depth information to precise the plane
instance segmentation results at boundary related
regions.

< Contribute a manually annotated test set as a standard
dataset for the plane instance segmentation problem.
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boundary regions
< Traditional boundary regression loss is vulnerable with
incorrect GT boundary

Methods

Propose the X-PDNet, with the Cross-Task feature distillation design, which promotes early information sharing between cross for
the specific task optimization
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Propose a novel Depth Guided Boundary Preserving Loss, which employes depth information to combats with incorrect ground
truth boundary, pricise predicted plane instance at boundary related areas
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Then utilize set of std values to reweight
the boundary regression loss
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Gradient: Gy = abs(Gy) +abs(Gy) With Gy = Sobel(Dy), Gy = Sobely(Dgr). |
1

For each GT boundary point, measure the standard deviation of a set of points
constructed from its gradient and that of its neighbors.

Experimental results

Segmentation Metrics Depth Metrics
Methods Datsset | up,  APS AP AP, AB® AB] | rll logwl RMSL 51 82 83 7 it
PlaneAE (3] ScanNet | 592 1472 400 786 1783 625 [0.111 0.049 0.409 0864 0967 0991
PlaneRCNN [J] | ScanNet | 14.23 28.23 1288 1751 33.00 16.00 | 0.124 0050 0265 0.865 0972 0.99% /
PlancRecNet [[3] | ScanNet | 16.61 31.59 1556 21.05 3645 2029 | 0076 0.032 0.180 0950 0.992 0.998 7
X-PDNet ScanNet | 17.62 33.05 16.60 22.23 37.53 2191 | 0.069  0.029 0175 0.955 0.993 0.999 b
PlancRecNet 3] | 2D-3D-S | 24.10 38.99 2439 27.13 4114 2723 | 0062 0027 0294 0966 0990 099 §
X-PDNet 2D-3D-S | 25.20 39.63 2579 28.62 41.80 29.15 | 0.061  0.026 0294 0.966 0.991 0.99% Depth Normal Segmentation
Table 1: Evaluation of plane i ion and depth estimation on ScanNet and EXample produced by the baseline (above) and X-PDNet (below)

2D-3D-S datasets. X-PDNet outperforms existing methods in most metrics. p [

Methods Eval set Boundary [oU Scgmentation Metrics

a ARy AP® AP)S AP, AP® AP

X-PDNet Provided by [ET] - 2520 3963 2579 2862 41.80 29.15 L%
X-PDNet+Vanilla Provided by (2] - 2649 4161 27.09 3023 4418 307 Images
X-PDNet+DGBPL | Provided by [E1] - 2586 4179 2634 2994 4555 29.98
X-PDNet Manually annotated 13.36 2409 3684 2508 2580 37.08 2672 i
X-PDNet+Vanilla Manually annotated 14.82 2527 3824 2659 27.08 3893 27.77 I
X-PDNet+DGBPL | Manually annotated 16.68 2612 3947 2668 28.18 40.86 27.46
Table 2: Evaluation of segmentation results on 2D-3D-S annotation provided by [E1] and X-PDNet X-PDNet +Vanilla  X-PDNet + DGBPL Ground truth
human labelling evaluation datasets. Planes predicted by X-PDNet, with Vanilla, and with DGBPL
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