X-PDNet: Accurate Joint Plane Instance Segmentation and Monocular Depth Estimation by Cross-Task Distillation and Boundary Correction

Cao Dinh Duc^{1, 3}, Jongwoo Lim²

¹ Dept of Computer Science, Hanyang University, Seoul, South Korea ² Dept of Mechanical Engineering, Seoul National University, Seoul, South Korea <u>3</u> AI Research Lab, MAXST Co., Ltd, Seoul, South Korea

1 Overview

- Design X-PDNet, a multitask learning framework for joint plane instance segmentation and monocular depth estimation.
- Propose a novel Depth-Guided Boundary Preserving Loss that uses depth information to precise the plane instance segmentation results at boundary related regions.
- Contribute a manually annotated test set as a standard dataset for the plane instance segmentation problem.

Acknowledgement

This work was partially supported by the Technology Innovation Program (No. 20018110, "Development of a wireless tele-operable relief robot for detecting searching and responding in narrow space") funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea) and National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1A2C2010245).

Paper ID: 326

- Poor quanty of plane instance ground truth in existing datasets
 Lack of boundary preserving loss => incorrect prediction at boundary regions
- Traditional boundary regression loss is vulnerable with incorrect GT boundary

3 Methods

Propose the X-PDNet, with the Cross-Task feature distillation design, which promotes early information sharing between cross for the specific task optimization

Propose a novel Depth Guided Boundary Preserving Loss, which employes depth information to combats with incorrect ground truth boundary, pricise predicted plane instance at boundary related areas

neighbor gradients of correct boundary

Then utilize set of std values to reweight the boundary regression loss

Gradient: $G_{gt} = abs(G_x) + abs(G_y)$ with $G_x = Sobel_x(D_{gt}), G_y = Sobel_y(D_{gt}).$

For each GT boundary point, measure the standard deviation of a set of points constructed from its gradient and that of its neighbors.

4 Experimental results

Methods	Dataset	Segmentation Metrics					Depth Metrics						
		APm	AP_m^{50}	AP _m ⁷⁵	AP_b	AP_b^{50}	AP_{b}^{75}	$rel\downarrow$	$log_{10}\downarrow$	$RMS\downarrow$	$\delta 1$	$\delta 2$	δ3
PlancAE [23]	ScanNet	5.92	14.72	4.00	7.86	17.83	6.25	0.111	0.049	0.409	0.864	0.967	0.991
PlaneRCNN [ScanNet	14.23	28.23	12.88	17.51	33.00	16.00	0.124	0.050	0.265	0.865	0.972	0.994
PlaneRecNet [ScanNet	16.61	31.59	15.56	21.05	36.45	20.29	0.076	0.032	0.180	0.950	0.992	0.998
X-PDNet	ScanNet	17.62	33.05	16.60	22.23	37.53	21.91	0.069	0.029	0.175	0.955	0.993	0.999
PlaneRecNet [23]	2D-3D-S	24.10	38.99	24.39	27.13	41.14	27.23	0.062	0.027	0.294	0.966	0.990	0.996
X-PDNet	2D-3D-S	25.20	39.63	25.79	28.62	41.80	29.15	0.061	0.026	0.294	0.966	0.991	0.996

Table 1: Evaluation of plane instance segmentation and depth estimation on **ScanNet** and **2D-3D-S** datasets. **X-PDNet** outperforms existing methods in most metrics.

N 4 1		D 1 J V	Segmentation Metrics						
Methods	Eval set	Boundary IoU	AP_m	AP_m^{50}	AP_{m}^{75}	AP_b	AP_b^{50}	AP_b^{75}	
X-PDNet	Provided by [23]	-	25.20	39.63	25.79	28.62	41.80	29.15	
X-PDNet+Vanilla	Provided by [23]	-	26.49	41.61	27.09	30.23	44.18	30.7	
X-PDNet+DGBPL	Provided by [23]	-	25.86	41.79	26.34	29.94	45.55	29.98	
X-PDNet	Manually annotated	13.36	24.09	36.84	25.08	25.80	37.08	26.72	
X-PDNet+Vanilla	Manually annotated	14.82	25.27	38.24	26.59	27.08	38.93	27.77	
X-PDNet+DGBPL	Manually annotated	16.68	26.12	39.47	26.68	28.18	40.86	27.46	

Table 2: Evaluation of segmentation results on **2D-3D-S** annotation provided by [2] and human labelling evaluation datasets.

울 대 학 교

SEOUL NATIONAL UNIVERSITY

Example produced by the baseline (above) and X-PDNet (below)

Planes predicted by X-PDNet, with Vanilla, and with DGBPL

