Maskomaly: Zero-shot Mask Anomaly Segmentation

Jan Ackermann, Christos Sakaridis, Fisher Yu

https://github.com/jan-ackermann/maskomaly

Anomaly Segmentation

Given set of inlier classes and image, segment regions that semantically not belong to any of the inlier classes

Datasets for autonomous driving consider anomalous what is not a class in **CityScapes**

Only the wooden pallet is marked red because it is not a class in CityScapes

Maskomaly

MDM – Maximal Detection Margin

- Designing method around AP is not practical (only requires existence of a good threshold)
- Need for metric that captures robustness regarding threshold choice

Columns: dense prediction, thresholded at 0.3, 0.5, 0.8

	Fixed	Inlier	
Pure	Post-processing: no	Algorithm 1 Maskomaly, Hyperparameters = $\{T_{mask}, T_{mask}, T_$	$T_{b}, \varepsilon_{b}, \lambda$
trainin Builds Segme	up on Mask-based Intation Networks	2: for $1 \le n \le N$ do 3: if $(\operatorname{argmax}_{1 \le l \le C+1} p_n[l]) \ne C+1 \land (\max_{1 \le l} \le L \le $	▷ Add inlier masks to \mathcal{I} $\leq C+1 p_n[l] \geq T_{\text{mask}}$ then ▷ Reject inlier pixels
Combi inlier anoma	areas and accepting alous regions	6: $o_{\text{reject}}[i,j] \leftarrow \min_{n \in \mathcal{I}} (1 - m_n[i,j] \cdot \max_{1 \le l \le C})$ 7: for $\{k,n\} \subseteq \mathcal{I}$ do 8: $b \leftarrow (m_k > T_b) \odot (m_n > T_b)$ 9: $b \leftarrow \min(1 - b + \varepsilon_b, 1)$	$p_n[l])$ \triangleright Reject borders
Deals explici ⁻	with border regions tly	10: $o_{\text{reject}} = \min(o_{\text{reject}}, b)$ 11: $\text{for } i, j \in H \times W \text{ do}$ 12: $o_{\text{accept}}[i, j] \leftarrow \max_{n \in \mathcal{A}}(m_n[i, j] \cdot p_n[C+1])$ 13: $\text{return } \lambda \cdot o_{\text{reject}} + (1 - \lambda) \cdot o_{\text{accept}}$	 Accept anomalous predictions Interpolate reject and accept scores

Key Insight: Mask-based Segmentation Networks learn **fixed queries** that predict masks for anomalies which are discarded by the segmentation algorithm

Lower column is more desirable, but AP is close (95.5% vs. 98.9%)

$$MDM_d^{T_{\text{margin}}}(A,B) = \max_{0 \le x < y \le 1} (y-x) \cdot \mathbb{1}\{\forall z \in [x,y]: d(A > z,B) > T_{\text{margin}}\}.$$

Results

		SMIYC						
Method	Aux. data	AP个	FPR95↓	sloU gt个	PPV↑	Mean F1↑		
DenseHybri d	Yes	78.0	9.8	54.2	24.1	31.1		
Max. Entropy	Yes	85.5	15.0	49.2	39.5	28.7		
EAM	Yes	93.8	4.1	67.1	53.8	60.9		
RbA	Yes	94.5	4.6	64.9	47.5	51.9		
DenseHybri d	No	51.5	33.2	-	-	-		
ObsNet	No	75.4	26.7	44.2	52.6	45.1		
EAM	No	76.3	93.9	-	-	-		
RbA	No	86.1	15.9	56.3	41.4	42.0		
Maskomaly	No	93.4	6.9	55.4	51.5	49.9		

			RoadAı	FishyScapes Static			
Method	Aux. data	AP个	FPR95↓	MDM个	MDM个	AP个	FPR95↓
SynBoost	Yes	38.2	64.8	0.0	0.0	66.4	25.6

Experimental configuration:

- Backbone:Mask2Fo**rmer/Swin-L** trained on **Cityscapes** for segmentation
- Validation set: **SMIYC** Validation
- Evaluated on: SMIYC, FishyScapes, RoadAnomaly, StreetHazards

Ground Truth Input

Max. Entropy ObsNet

Maskomaly

- No missing patches inside segmented anomaly
- High accuracy around borders
- No predictions in non-anomalous areas
- Visualization threshold by optimizing F1

PEBAL	Yes	45.1	44.6	-	-	92.1	1.5
DenseHy brid	Yes	63.9	43.2	-	-	60.0	4.9
Max. Entropy	Yes	79.7	19.3	25.2	9.2	76.3	7.1
ObsNet	No	54.7	60.0	5.1	0.0	9.4	47.7
GMMSeg	No	57.7	44.3	-	-	82.6	-
EAM	Yes	66.7	13.4	-	-	87.3	2.1
Maskoma ly	Yes	70.9	11.9	67.1	35.9	69.5	14.4

Ablations:

					RoadAnomaly		SMIYC	
Acc.	Rej.	Bord.	Init.	AP个	FPR95↓	AUC↑	AP个	FPR95↓
Yes	No	No	No	46.0	26.3	89.2	-	-
No	Yes	No	No	45.3	19.3	91.3	-	-
No	Yes	Yes	No	45.5	15.7	92.0	58.4	23.4
Yes	Yes	Yes	No	63.2	14.8	94.2	-	-
Yes	Yes	Yes	Yes	70.9	11.9	95.5	93.4	6.9

Quantitative Results:

Maskomaly achieves state-of-the-art

performance

- MDM İS more informative than AP.
 - Incrementally adding components always leads to an improvement in AP