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Abstract

This supplementary document details DOP’s derivation and algorithm for few-shot
learning, along with further comparisons with other methods. Additional experimental
details, visualizations, and results are included. We provide code that reproduces our
findings, to be published alongside the paper.

A. Additional Details of DOP

Al. Derivation of PARSE

As mentioned in Sec. 3 of the main paper, estimating part expression and location leads to
two coupled optimization problems.

2p(p) = argmjn Y 110 mu) — Dp.cBell” + Al - )
ceC
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For solving the above, we first approximate the solution to Equation (1) by optimizing the
reconstruction error and subsequently thresholding. As mentioned in the main paper, this is
closely related to thresholding methods employed in LASSO [3]. So, first we solve

Z;v(“) = argn};in Z H¢c,M(u) *Dp,cﬁcnz

ceC

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Hastie, Tibshirani, and Friedman} 2001


2 R ZHU, PZHU, S MISHRA AND V SALIGRAMA: DEEP OBJECT PARSING, BMVC 2023

As a reminder, the subscript M () refers to the projection of @, onto the support of M(u),
which is an s X s grid centered at (. The quadratic form of the above optimization problem,
gives us an explicit solution.
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where 8, (v) = 8(u —v),v € [G] x [G] is a dirac delta centered at i, * is a convolution'
Dpe*6u(v) =Y, Dpe(w—v)0u(v) and ‘> is the double-dot product or the sum of all
elements of an element-wise/Hadamard product.
For estimating location, we substitute z;, into Equation (2) resulting in an upper bound for
L,(u), which we denote as Lj,(1).
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For step (1) above, we substitute z . from Equation (3). For step (2), note that D), . :
Ocm(u) = (Dpc* @) (1), since M(p) is an s X s attention map centered at Ll.

Frorn Equation (4), by ignoring the first and the last terms and contracting the binomial
squares, we get the following as our estimate for ft,,. Note that the last term is ignored because
it does not depend on p. Also, the first term Y cc(c] || @cpr(n) ||?, which is the energy across all
channels varies little for different values of u.
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Opc=Dpc/||Dp, ».c|| becomes a channel dependent constant. The location
estimate in Equation (5), is thus, in the form of template matching per channel.

'Note that following terminology from signal processing this is not actually a convolution but a cross-correlation.
However, the way we use this term has been accepted in literature surrounding convolutional neural networks.
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Differentiable Estimates. As mentioned in the main paper, the above estimate (Equation (5))
for u, does not provide any gradients for the parameters in 6, or those involved in computing
¢.. We make the estimate differentiable in its parameters by approximating the argmax as the
expectation of a softmax distribution v,, over [G] x [G] with a low temperature 7.

1
Vp(1) = softmax (T Z ((Bp,c* ¢c) (1) — ;Lc)z> s Mp=Euwy,u (6)

ceC

Substituting back the estimate of (1, into Equation (3) again makes z,, unusable to get
gradients (since 1, is an index in a non-continuous domain [G] x [G]). One workaround is
estimating z,, as an expectation over v, of Equation (3) (similar to how p,, is estimated).

D, c ’
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However, we found a different estimate turns out to be more accurate and performs better in
practice. Using the first expression from Equation (3)

/o (Dpc* 5ﬂp) 0 ~ (Dp,c* 5”p) P ®
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We make this estimate of z,, . differentiable by using a differentiable approximation of Jy,,, S,LP
which is a low-radius (6> = 0.25) gaussian centered at Up. With the DOP model with 1 part,
this estimate (Equation (8)) achieves an accuracy of 90.56% on 5-way 5-shot classification on
the CUB dataset, while the estimate from Equation (7) achieves an accuracy of 89.46% on
the same task.

A2. Few-shot Learning

Algorithm outlines the loss computation for a single query ¢. In Algorithm , 7 is a tunable
parameter controlling the weight of the prior. In each episode, we use an average of the loss
output over multiple query examples, which results in an end-to-end differentiable criterion
in all trainable parameters, allowing us to optimize using gradient descent.

Algorithm Training loss for Few-shot recognition with DOP (single episode, single query)

Given: requirements for Algorithm 1 PARSE, weighting function «, tunable parameter y
Input: Query example with ground truth label g, ) e x x [N]. Support examples

I= Uye[N] [Iy = {x(l‘y)}ie[M]}
Trainable parameters: Convolutional backbone f, part templates {Ds ¢ }ses pe[K].cec)s
weighting function o

_ (a) (a) i)y — (i.y) ().
Compute parses PARSE(q) = ({14}, (<)} PARSE() = (3} {3)})is €
S,p € [K]
Compute distances d(g,y) for y € [N] using Equation (7)
Output: loss ¢(q) = lce(q) +1 Illﬁ Yreru{q) Laiv(x) using Equation (8)(9)
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B. More on Compared Methods

Prior works on FSC [2, 20, 21, 26, 29] have also focused on combining parts, albeit with
different notions of the concept. As such, the term part is overloaded and is unrelated to
our notion. DeepEMD [29] focuses in the image-distance metric based on an earth mover’s
distance between different parts. Parts are simply different physical locations in the image
and not a compact collection of salient parts for recognition. [20] uses salient object parts
for recognition, while [21] attempts to encode parts into image features. However, both
these methods require additional attribute annotations for training, which are expensive to
gather and not always available. [2] and [26] discover salient object parts and use them for
recognition via attention maps similar to our method.

We compare DOP to state-of-the-art few-shot learning methods, including RENet [7],
FRN [25],TDM [12] and DeepEMDI[29] and also to methods like FOT [23], VFD [27],
DN4 [14] and TDM [12], which are dedicated to the fine-grained setting. To highlight the
contribution of DOP, we tabulate in Table 1 the differences of the model design compared to
prior works [2, 21, 26, 29] in few-shot learning that also use part composition.

While there are prior works that learn recognition via object parts, and use instance-
dependent reweighting, DOP is unique since it uses reconstruction with templates (RwT) as a
criterion, uses a prior on the geometry of parts using part-locations and uses this geometry for
comparing instances. See Table | for a tabulated comparison.

Note : There are some prior works where the notion of the term part is overloaded and
is unrelated to our notion. Hence DeepEMD [29] and LCR [21] do not have a v'under
“Parts”. LCR [21] attempts to encode parts into image features. DeepEMD [29] focuses in the
image-distance metric based on an earth mover’s distance between different parts. Here, parts
are simply different physical locations in the image and not a compact collection of salient
parts for recognition.

Again, FRN [25] does not have a v'under “RwT”. It uses a reconstruction objective,
but attempts to reconstruct query features from support. While this helps in determining
belongingness to a class based on how well the support features reconstruct query, the method
does not use templates that are shared across all image instances, reconstruction using which
allows for low noise representations.

Table 1: Similarities and differences in high-level use of components by DOP and prior work.
Parts: recognition using parts; RwT: Reconstruction with Templates; Geo: using geometry of
parts for instance comparison, and incorporating prior on geometry.; Reweighting: instance
dependent reweighting of matching scores.

Methods Parts RwT Geo Reweighting
LCR [21]

SAML [2] v v
DeepEMD [29] v
FRN [25]

TPMS [26] v v
TDM [12] v
DOP (ours) v v v v
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C. Additional Experiments

C1. Details on Dataset Settings

We compare DOP on four fine-grained datasets: Caltech-UCSD-Birds (CUB) [22], Stanford-
Dog (Dog) [8] Stanford-Car (Car) [10] and Aircraft [17] against state-of-the-art methods.
Caltech-UCSD-Birds (CUB) [22] is a fine-grained classification dataset with 11,788 images
of 200 bird species. Following convention[4], the 200 classes are randomly split into 100
base, 50 validation and 50 test classes.

Aircraft contains 100 classes of aircrafts and 10,000 images in total. Following recent
benchmark [12, 25], we processes all images based on bounding box. And the 100 classes are
split into 50, 25 and 25 classes for training, validation and test.

Stanford-Dog [8] is a dataset for fine-grained classification. Dog contains 120 dog breeds
with a total number of 20,580 images. For few-shot learning evaluation, we follow the
benchmark protocol proposed in [14]. Specifically, 120 classes of Dog are split into 70, 20,
and 30 classes, for training, validation, and test, respectively. Similarly, Car is split into 130
train, 17 validation and 49 test classes.

Stanford-Car [10] is a dataset for fine-grained classification. Car consists of 16,185 images
from 196 different car models. For few-shot learning evaluation, we follow the benchmark
protocol proposed in [14]. Similarly to previous datasets, Car is split into 130 train, 17
validation and 49 test classes.

C2. Training details

Our model is trained with 10,000 episodes on CUB and 30,000 episodes on Stanford-Dog/Car
for experiments with both ResNet12 and ResNet18. In each episode, we randomly select 10
classes and sample 5 and 10 samples as support and query data. The weight on the geometric
prior 7 is set to 1.0 on CUB and 0.1 on Stanford-Dog/Car, respectively. We train from
scratch with Adam optimizer [9]. The learning rate starts from Se-4 on CUB and le-3 on
Stanford-Car/Dog, and decays to 0.1x every 3,000 episodes on CUB and 9,000 episodes on
Dog/Car. On CUB, objects are cropped using the annotated bounding box before resizing to
the input size. On Stanford-Car/Dog, we use the resized raw image as the input. We employed
standard data augmentations, including horizontal flip and perspective distortion, to the input
images.

C3. What parts does DOP detect?

We visualize the locations i, learned by DOP in Figure 1. DOPis able to detect consistent
parts for the same task and often finds semantically meaningful parts like head and torso/breast
in birds and dogs and wheels and doors/windows on cars. Figure 1 also shows some failure
cases of DOP, where it might fail to locate parts on the object if similar visual signatures
appear in the background.

C4. Visualizing Templates and Part Expressions

Some templates of the learned dictionary D), are visualized in Figure 2. Our model uses each
template to reconstruct the original feature in the corresponding channel. We see diverse
visual representations in different channels, implying that DOP learns diverse visual templates
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Aircraft Dog CUB Car Failure

Figure 1: Exemplar part locations learned by DOP when K = 3. From left to right: Aircraft,
CUB, Dog, Car, and failure cases. DOP can fail and locate parts on the background if it has
visual signatures similar to an object.

from the training set to express objects. Figure 3 shows the activated templates for different
objects. The model uses the same templates to express the same class.

—
MR-

Figure 2: Exemplar templates of learned dictionary D),. The templates shown are for randomly
sampled channels for scale 3 (top) and 5 (bottom).

C5. Full Results on CUB

Many existing methods have been implemented on the CUB dataset (Table 2). We can reach
comparable state-of-the-art performance.
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