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1 Overview

In Supplementary Material, we provide implementation details of the proposed CSD fram-
work and the data loading and training procedure of the whole algorithm, which help fu-
ture research and conform with reproducibility principles. We also give more discussion and
comparison with other related work and demonstrate the superiority of the proposed method.

2 Implementation Details.

To validate the applicability of CSD, we deploy it on typical baseline methods (i.e., IRN
[1] and MCTformer [8]). The general training pipline includes multi-label image classifica-
tion, a pseudo-mask generation, and the final segmentation training three stages. We strictly
follow the same settings (e.g., image augmentation) as reported in the official codes. Spe-
cially, for MCTFormer [8] baseline, Deit-S that pre-trained on ImageNet [3] is adopted as
classification backbone with batch size as 64. Training images are resized to 256 × 256 and
then cropped into 224 × 224. For IRN [1], ResNet50 [4] that pre-trained on ImageNet[3] is
adopted as classification backbone with batch size as 16. Training images are croped as 512
× 512. When imposing our proposed CSD on MCTformer and IRN, we set λ1 = 0.01 and
λ2 = 0.1 in order to keep balance with classification loss. As for the training epoch, learning
rate, learning rate decay policy, weight decay rate, and optimizer, we follow the same setting
as MCTformer and IRN. At test time of segmentation model, we used multi-scale testing
and CRFs with the hyper-parameters suggested in [2] for post-processing.
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3 Algorithm Pipeline
Before the optimization pipeline of CSD, we first extract the original foreground maskM f g
and background mask Mbg based on the baseline methods. Then during the pipeline of
CSD, we augment the multi-label image by pasting the foreground mask and background
mask of single-label image. By imposing the semantic activation consistency learning, we
alleviate the coupling between multiple classses and obtain more precise semantic activation
map as the pseudo labels of segmentation. We provide steps of the data loading and training
in Algorithm 1.

Algorithm 1 Cross-domain Semantic Decoupling.
Input:

The training dataset images X and corresponding labels L;
The foreground object maskM f g and corresponding background maskMbg.

1: while not done do
2: X i

m, Li ← Load one multi-label sample;
3: X j

s , L j ← Resample one single-label image according co-occurrence;
4: X f g, Xbg ← Crop foreground and background.
5: X f g

sm ← Paste X f g into X i
m;

6: X bg
sm ← Paste Xbg into X i

m;
7: Ms,M f g

sm,Mbg
sm ← forward Xs, X f g

sm , X bg
sm ;

8: Lbg, L f g ← KL(Ms,M f g
sm), KL(Ms,Mbg

sm) ;
9: Lcls ← CE(Mm,Li);

10: Train Network←Lcls + L f g + Lbg ;
11: end while

4 Discussion and Comparison.
The proposed CSD framework propose a novel method designed for decoupling multiple
target-objects from the cross-domain perspective. Our present dual background-foreground
copy-and-paste scheme for balanced attention consistency. The benefits are twofold: the
first is to avoid the over activation of foreground categories. The second is to promote the
decoupling and differentiation between the background category and the other categories in
the foreground. In prior work, CDA [7] also leverage the copy-and-paste for decoupling the
high correlation between objects and their contextual background. AttBN [5] transfers the
foreground prior from a simple single-label dataset to another complex multi-label dataset
by adversarial learning [6]. However, they still cannot further narrow the gap between clas-
sification and segmentation tasks from the pixel level. In general, our CSD can effectively
alleviate the pixel-wise coupling problem between all target-categories without introducing
any extra data.
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