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Phot, Sketey, Ca’TOO,, Muj;. Doy, M»i'ff,’;bo%. Phot, Sketey, CartoOn MmeOma- leyl,(;,';DOma. Phot, Sketey, Ca’toon MU/tLDOlha- MVIVJI/;;,’ Doy, MO del TOp-l ACCU I'a Cy (Baseline / With DDM)
" oy " oy oy Photo Sketch Cartoon |Painting (Unseen)|  Average
Training Data Training Data Training Data
g g g SImMCLR  197.54 / 98.28/98.12 / 97.04 98.03 / 99.24 87.59 / 89.42 9532 / 96.00
MoCo 93.59 /93.19 92.71/94.36 91.63 /9298 //.34 /7851 88.81/89.76
BYOL /8.08 /81.61 /6.55/78.24 /555 /7558 58.10/62.67 |/2.0//74.53
i DINO 93.67/95.25 9433 /9642 /944 /81.77 /2.12 /7443 85.89 /86.97
A Closer LOOk at Representatlons SimSiam 83.68/84.71 80.9/ /85.44/93.75/ 92.59 5/.98/64.09 /9.09/81.71
Barlow Twins 85.09 / 83.94/85.44 / 88.07 92.0/92.83 59.01/62.67 80.39/81.89

The natural clustering of classes among Sim-
CLR representations disappears when we

move from CIFAR-10 to Colored-CIFAR. There
s almost no overlap between the most acti-

CIFAR-10

Table 1. SSL baselines trained on PACS (Photo, Sketch and Cartoon) with DDM
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Vah ﬂg featu [eS O]C €achn ClaSS bet\/\/eeﬂ the red Model Painting Real Sketch Clipart (Unseen) Infograph (Unseen) Quickdraw (Unseen)  Average
and green domains. The domain information A0R SIMCLR  |74.49 / 75.99/79.31 / 82.02/85.86 / 86.26  68.60 /7048 | 34.75/ 39.25 20.98/2438 160.99 / 63.06
: : : s MoCo  70.20/73.08 89.79 / 86.3786.66 / 88.15 65.10/68.91 = 34.56/ 34.75 19.89 /2212 61.03/62.23
(CO|OI’) and Instance information (a ctual con- BYOL  56.87/59.8277.60/79.67 71.43/75.21 50.67 /5586 | 27.4/30.68 19.33/22.85 50.55/54.02
: : : DINO  79.53/79.11 86.46 /86.88 75.8/76.50 6632 /7376  30.83/32.12 27.71/29.08 61.11/62.90
tent of the image) are somewhat interleaved in SimSiam  77.55/ 78.78 82.02 / 85.88 86.52 / 88.38 67.43/71.53  27.03/30.56 2229 /2567 6047 / 6347
these representations Causing different sets of Barlow Twins 56.78 / 61.18 79.06 / 80.16 71.56 / 73.90 60.40/ 64.33 = 2611/ 28.82 18.67 /21.70 |52.09 / 55.01

features to be strongly activated for the same ' '8Ur¢ 1. Accuracy: 90.18

class based on the domain.
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Figure 2. Accuracy: 78.52

Domain Disentanglement Module for Self-Supervised
Representations

Let h; € R” denote the " representation with domain y;. We call h{
(h; o.) as the domain-variant portion and h% (h; x._,-) as the domain-invariant
portion. We train the domain prefix of the it* sample according to the
E?fl lj#i]lyz':yﬁim(hg ,h;?)
Z?jzvl ]1y¢#yj5im(h§ivh§'i)

't should not be possible to predict the the domain label y; from the rep-
resentation h! therefore, we pass each h through a domain discrimi-
nator D(.) and minimize the Wasserstein distance, L;,. = D(h} y;) —

D(BY, yrana), Where yrang ~ P(y). The final optimization for the encoder
(f(.)) and the discriminator (D(.)) is,

following contrastive optimization, L;, =

log

2N
m?X Z [)\Lissl T Lid_var + Lidimvar]
1=1
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Table 2. SSL baselines trained on DomainNet (Painting, Real and Sketch) with DDM

DDM with Robust Clustering

VWhen domain labels are not available, we discover M clusters (K-Means

after warmup) with centroids ¢y, co, . .

., ¢y and assign pseudo-domain-

labels to each sample, provided the sample is not an outlier,
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We repeat clustering at regular intervals of training decaying € from 1 to
0 as more and more samples become inliers to the discovered clusters.

DDM with Clustering

DDM with Robust Clustering
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Model Top-1 Accuracy (Baseline / with DDM and robust clustering)
CIFAR-10 STL-10 CIFAR-100 |Tiny-ImageNet (Unseen)  Average

SimCLR  189.43/90.03/79.77 /81.01 63.33 / 64.90 4958 / 51.22 /70.53/71.79
MoCo 90.80 / 90.69 80.02 / 81.60 61.5/ / 64.28 37.16 / 39.55 6/.38 / 69.03
BYOL 88.31/89.68 /5.07/75.72 64.82 / 65.56 50.04 / 51.10 69.56 / 70.52
DINO 90.61 /9296 84.7 / 82.35 62.63/ 63.57 4952 / 52.46 /1.87/72.84
SimSiam |87.02 /87.38/72.15/73.78 62.08 / 61.90 33.11 / 34.78 63.59 / 64.46
Barlow Twins 88.31 / 89.01 /5.59 / 76.11 65.03 / 66.89 40.27 / 41.31 6/.30 / 68.33

Table 3. SSL baselines trained on a mixture of CIFAR-10, STL-10 and CIFAR-100 using
DDM and robust clustering
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