

EXPERIMENTS AND RESULTS

Results

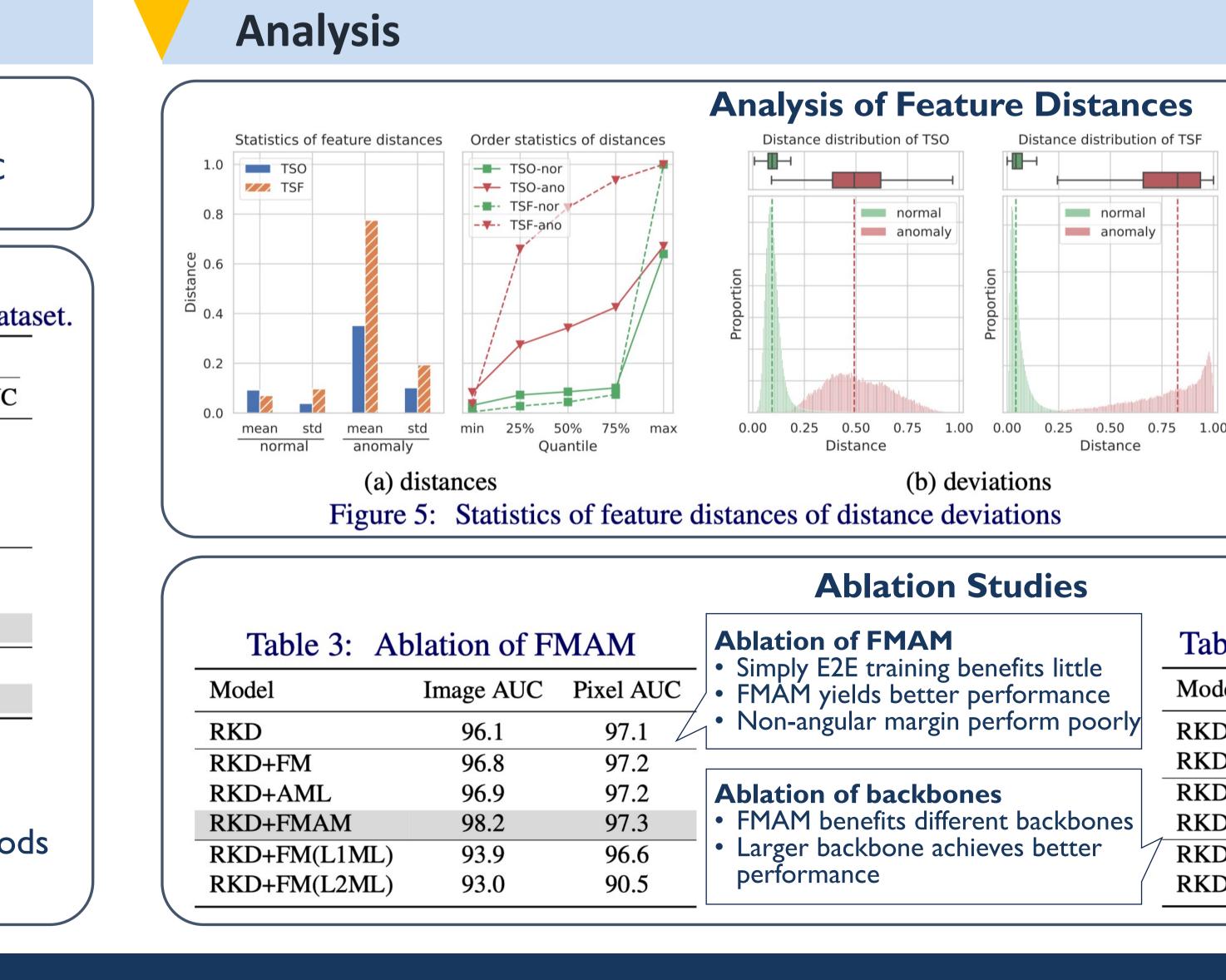
Expe	Experiment Setup				
• Datasets:	• Evaluation:				
MVTec dataset	 Image-level AUC of ROC 				
 ZJU-Leaper dataset 	Pixel-level AUC of ROC				
Performa	nce Comparison				

Category	Method	MVTec		ZJU-Leaper	
cutogory		Image AUC	Pixel AUC	Image AUC	Pixel AUC
Feature Space	PuzzleAE [71.1	80.7	69.1	68.2
	FCDD [86.6	92.5	58.0	61.6
	SPADE [3]	85.5	96.0	83.3	88.8
	PaDiM [4]	90.3	96.1	84.8	86.3
Symmetric KD	MRKD [🔼]	87.7	90.7	86.9	82.3
	NKD	94.7	96.6	84.9	92.7
	NKD+FMAM	96.7	96.9	88.6	93.6
Asymmetric KD	RKD [🖪]	96.1	97.1	89.8	93.8
	RKD+FMAM	98.2	97.3	91.9	94.7

- FMAM achieves superior performance than many SOTA methods
- FMAM achieves better performance than original KD methods
- Improvements can be obtained on different datasets

Adapting Generic Features to A Specific Task: A Large Discrepancy **Knowledge Distillation for Image Anomaly Detection**

Chenkai Zhang, Tianqi Du, Yueming Wang* Zhejiang University



Angular Margin Loss

- based on the cosine similarity
- for contrastive learning

Synthesis Process

- Structure obtained from shuffled patches
- Texture obtained from the DTD dataset
- Perlin noises

Statistical Analysis

FMAM can effectively increase bias of anomalous features while keep low variance of normal features

Distribution Analysis

FMAM can significantly increase the separability between normal and anomalous samples

	Table 4: Ablation of other backbones						
-	Model	Image AUC	Pixel AUC				
	RKD(res34)	98.3	97.2				
1	RKD(res34)+FMAM	98.3	97.4				
-	RKD(res50)	98.5	97.6				
	RKD(res50)+FMAM	98.8	97.9				
7	RKD(wres50)	98.5	97.7				
	RKD(wres50)+FMAM	99.1	98.1				

Visualization

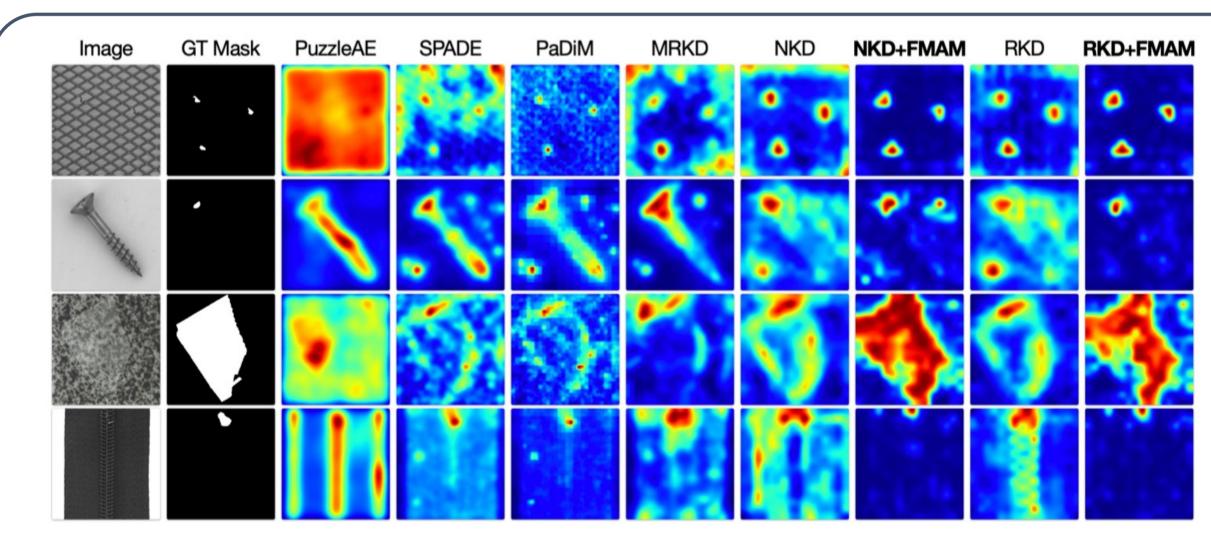
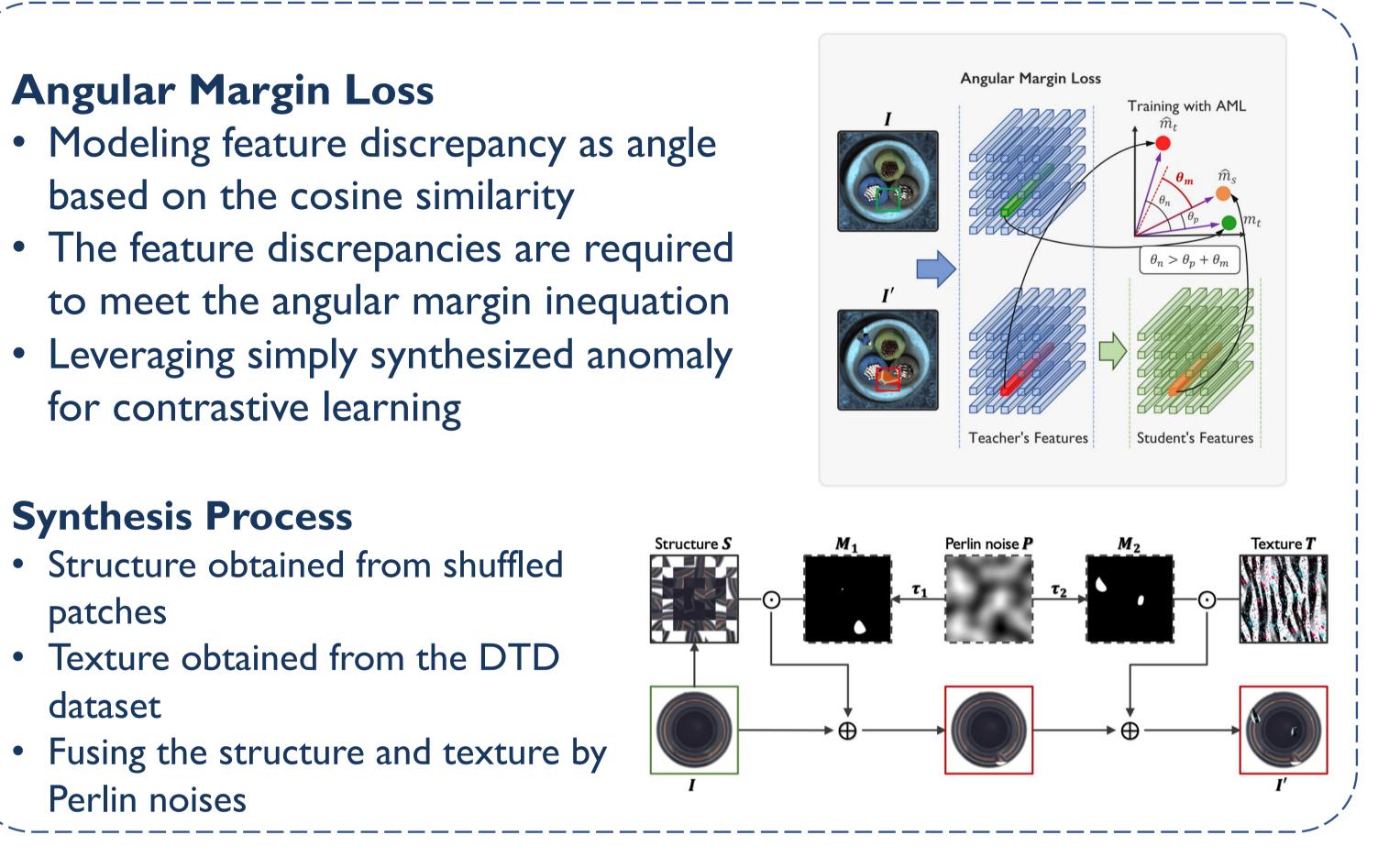


Figure 4: Visual comparison with other SOTA detection methods on the MVTec dataset. regions

- anomaly detection task.
- proposed method.



Results of Localization

- FMAM can produce clearer and more precise localization results
- FMAM can reduce false alarms of on the heatmaps
- FMAM can better "fill" the whole anomalous

Conclusion

Feature Mapping adapts features pre-trained on natural images for the image

 Training with Angular Margin Loss further increases feature discriminability. \checkmark The superior performance successfully demonstrate the effectiveness of the