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INTRODUCTION

Motivation: The features pre-trained on natural images only have

limited ability to detect anomalies in industrial images.
» Industrial image are different: anomalous and normal images share the
same semantics and defects occur only in small regions.
» Generic features are less capable: the features pre-trained on natural
images cannot produce discriminative features for industrial anomalies.
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? How to exploit generic features to a specific detection task ?

EXPERIMENTS AND RESULTS

METHOD

Our idea
v General features are adopted to the detection task by Feature Mapping (FM)

v" The separability of anomalies will be increased by optimizing Angular Margin
Loss (AML)
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Feature Mapping

* Keeping the original features
untouched

* Adjusting features by a tiny
number of parameters

* Maximizing the feature
discrepancies between the T-S
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Angular Margin Loss

* Modeling feature discrepancy as angle
based on the cosine similarity

* The feature discrepancies are required
to meet the angular margin inequation

* Leveraging simply synthesized anomaly
for contrastive learning

Synthesis Process
* Structure obtained from shuffled
patches
* Texture obtained from the DTD
dataset
* Fusing the structure and texture by
\_ Perlin noises /
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Results of Localization

* FMAM can produce
clearer and more
precise localization
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* FMAM can reduce false
alarms of on the

heatmaps

* FMAM can better “fill”
the whole anomalous
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Conclusion
v" Feature Mapping adapts features pre-trained on natural images for the image
anomaly detection task.
v Training with Angular Margin Loss further increases feature discriminability.
v" The superior performance successfully demonstrate the effectiveness of the
proposed method.




