
◼Activation-Based Pseudo-Labeling
• Pseudo label
• Similarity between liveness feature and class activation map

• Liveness loss

◼Anti-Forgetting Feature Learning
• Reliable feature selection

• Anti-forgetting liveness loss

◼Asymmetric Prototype Contrastive Learning
• Asymmetric prototype contrastive loss

Test-Time Adaptation for Robust Face Anti-Spoofing

Face Anti-Spoofing (FAS) 

◼ Fully Test-Time Adaptation (TTA)

◼ Challenges in TTA Setting
• Noisy pseudo-label problem
• Class imbalance within a batch of target data
• Unseen attack types

◼ Goal
• To obtain reliable pseudo labels
➢ Via fine-grained activation map

• To prevent overfitting to one dominant class
➢ Via memory bank 

• To detect unseen attack types
➢ Associate unseen attacks with seen attacks

3A-TTA Framework

◼ Total Loss

Experiments

◼ Datasets
• OULU-NPU (O), MSU-MFSD (M), CASIA-MFSD (C), 

Replay-Attack (I), 3DMAD (D), and HKBU-MARs (H)

◼ Evaluation Metrics
• Half Total Error Rate (HTER) ↓
• Area Under Curve (AUC) ↑

Proposed TTA-FAS Benchmark

Ablation Study

Pei-Kai Huang, Chen-Yu Lu, Shu-Jung Chang, Jun-Xiong Chong, and Chiou-Ting Hsu
National Tsing Hua University, Taiwan
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Experimental Comparisons

T-SNE Visualization
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