

SHANGHAI JIAO TONG **UNIVERSITY**

上海人工智能实验室 Shanghai Artificial Intelligence Laboratory

¹CMIC, Shanghai Jiao Tong Uniersity ²Beijing University of Posts and Telecommunications ³Shanghai AI Laboratory

Problem Scenario

Composed image retrieval (CIR) aims to train a model that can fuse multi-modal information to accurately retrieve images that match the query.

Our Contribution

- **Datasets:** we initiate a scalable pipeline to automatically construct datasets for training CIR model, by simply exploiting a large-scale dataset of image-text pairs.
- Architecture: we introduce TransAgg, which employs a simple yet efficient fusion \succ mechanism, to adaptively combine information from diverse modalities;
- **Results:** our proposed approach either performs on par with or significantly outperforms the existing state-of-the-art (SOTA) models.

Paper

 \succ

 \succ

Zero-shot Composed Text-Image Retrieval

Yikun Liu^{1,2}, Jiangchao Yao^{1,3}, Ya Zhang^{1,3}, Yanfeng Wang^{1,3}, Weidi Xie^{1,3}

For one image-caption sample, we can revise its caption and use the resulting edited caption as a query Retrieve the target image with similar caption, where we adopt Sentence Transformer.

We obtain different training datasets depending on the different approaches for revising captions.

TransAgg (Architecture)

Encoders to extract features from visual and textual inputs respectively;

A Transformer module to capture the interaction between two modalities;

An adaptive aggregation module that combats modal redundancy and fuses the features together.

Experiment Results

Method	Zero-shot	# Triplets	CIRR				FashionIQ		
			R@1	R@5	R@50	R _{Subset} @1	R@10	R@50	Average
Pic2Word [25]CVPR'2023	~	-	23.90	51.70	87.80	-	24.70	43.70	34.20
PALAVRA [5]ECCV'2022	~	-	16.62	43.49	83.95	41.61	19.76	37.25	28.51
SEARLE-XL-OTI [2]arXiv'2023	~	-	24.87	52.31	88.58	53.80	27.61	47.90	37.76
CompoDiff w/T5-XL [9]arXiv'2023	~	18m	19.37	53.81	90.85	28.96	37.36	50.85	44.11
CASE Pre-LaSCo.Ca. [15]arXiv'2023	~	360k	35.40	65.78	94.63	64.29	-	-	-
TransAgg (Laion-CIR-Template)	~	16k	38.10	68.42	93.51	70.34	32.07	53.26	42.67
TransAgg (Laion-CIR-LLM)	~	16k	36.71	67.83	93.86	66.03	32.77	53.44	43.11
TransAgg (Laion-CIR-Combined)	~	32k	37.87	68.88	93.86	<u>69.79</u>	34.36	55.13	44.75
CLRPLANT w/OSCAR [18]ICCV'2021	×	-	19.55	52.55	92.38	39.20	18.87	41.53	30.20
ARTEMIS [6]ICLR'2022	×	-	16.96	46.10	87.73	39.99	26.05	50.29	38.17
CLIP4CIR [1]CVPRW'2022	×	-	38.53	69.98	95.93	68.19	38.32	61.74	50.03
BLIP4CIR+Bi [19]arXiv'2023	×	-	40.15	73.08	96.27	72.10	43.49	67.31	55.40
CASE [15]arXiv'2023	×	-	48.00	79.11	97.57	75.88	48.79	70.68	59.74

- On CIRR dataset, our proposed model achieves state-of-the-art results in all metrics \succ except for Recall@50;
- On FashionIQ dataset, our proposed TransAgg model trained on the automatically \succ constructed dataset also falls among the top2 best models.

Explainability Heatmaps

ame breed dog

focus on its heac

bend the knees and put on knee pads.

