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This supplementary material provides extensive background on gate-based quantum com-
puting (Sec. A), mathematical details on our normalisation scheme (Sec. B) and a visualisa-
tion of the circuit design (Sec. C).

A Background

A.1 Preliminaries on Quantum Computing

A qubit is the unit of information in a quantum system. Like a classical bit’s binary states, a
qubit has two basis states written in the Dirac’s bra-ket notation as |0⟩ and |1⟩.

Figure 1: The one-
qubit state |ψ⟩ =
(−0.91 − 0.39 j) |0⟩
+(−0.11−0.05 j) |1⟩ on
the Bloch sphere.

Superposition is one of the key advantages of quantum com-
puting over classical computing. Rather than being restricted to
the basis states, a qubit can also be in a state |ψ⟩ that is a lin-
ear combination of the basis states: |ψ⟩ = α |0⟩+β |1⟩, where
α,β ∈ C and |α|2 + |β |2 = 1. If we write the basis states as or-
thogonal vectors |0⟩ =

[
1 0

]T ∈ C2 and |1⟩ =
[
0 1

]T ∈ C2,
we see that they span a complex Hilbert space. A state of a
single qubit can be visualised on the Bloch sphere; see Fig. 1.

Measuring the state |ψ⟩ irreversibly forces (or collapses) it
into one of the basis states, i.e. it yields either |0⟩ or |1⟩. The
probability of collapsing to |0⟩ or |1⟩ is |α|2 and |β |2, respec-
tively. Because of this property, |α| and |β | are also called prob-
ability amplitudes.

Quantum entanglement is the second key advantage over
classical computing. The state of a collection (or system) of
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Figure 2: An exemplary quantum circuit. A feature map encodes a classical input into a state
vector of N=4 qubits, which is then transformed by the parametrised quantum gates before
being measured to obtain N classical output bits.

classical bits is described fully by knowing the state of each bit. However, qubits can be
so strongly correlated that the state of the system cannot be described anymore as a mere
collection of per-qubit states. Rather, the entire system can be in a joint superposition. For
example, a system of two entangled qubits has a state |ψ⟩= α |00⟩+β |01⟩+γ |10⟩+δ |11⟩,
with α,β ,γ,δ ∈C, |α|2+ |β |2+ |γ|2+ |δ |2 = 1, and |i j⟩ ∈C2⊗C2 are basis states covering
all combinations of the two qubits, where “⊗” is the tensor product. In other words, the state
of a classical system is a single combination of N bits, while the state of an entangled system
is a distribution over all combinations. More generally, an N-qubit system can exist in any
superposition of the 2N basis states: |ψ⟩= ∑

2N−1
i=0 αi |i⟩, where i enumerates all combinations

of the N qubits (i.e., all basis states |i⟩ ∈ (C2)⊗N) and ∑
2N−1
i=0 |αi|2= 1. In vector notation,

we obtain the state vector: |ψ⟩ = (α0,α1, . . . ,α2N−1). Thus, the state of N qubits is given
by specifying 2N−1 many degrees of freedom (DoF), while a classical system is given by N
DoF. Therefore, entanglement allows to encode exponentially many real numbers in N many
qubits, improving the processing speed of quantum computers and achieving exponential
speed-up over classical systems.

A.2 Quantum Circuits
Like a classical circuit acts on classical bits, a quantum circuit transforms the state of a given
N-qubit system (performs a computation with qubits). A quantum circuit consists of three
broad steps, as Fig. 2 shows: input encoding, applying parameterised quantum gates, and
output measuring. First, the classical input data (3D poses in our case) needs to be encoded
into an initial N-qubit state vector. As its main operation, the quantum circuit then applies a
unitary operation (the complex analogue of an orthogonal matrix) to this initial state vector.
We thus obtain a transformed state vector as output. Subsequent measuring collapses the
qubits to basis states, yielding an N-dimensional bit string.
Input Encoding. We first need to convert our classical input data into an initial quantum
state vector. To that end, a feature map takes the classical input into the N-qubit Hilbert
space. While there are many ways of encoding classical information (e.g. angle encoding),
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Figure 3: Circuit Notation. (Left:) Measurement: The black wire is a qubit and the grey
double wire is a classical bit; the black box indicates measurement. (Top-right:) Rotation
gates. (Bottom-right:) Controlled rotation gates. The top qubit is the control qubit for all
three gates, while the bottom qubit acts as the target qubit.

we choose to use amplitude encoding since it takes the most advantage of the exponentially
large state space. It encodes 2N distinct floating-point values as the amplitudes of the state,
thereby requiring only N qubits. Specifically, amplitude encoding takes a classical data
vector x = (x0,x1, . . . ,x2N−1) ∈ [0,1]2

N
that is normalised to ∥x∥2 = 1 and encodes it into the

N-qubit quantum state |ψ⟩= ∑
2N−1
i=0 (xi +0 j) |i⟩, where j is the imaginary unit.

Parametrised Quantum Gates. At its core, a quantum circuit applies a unitary transform
Uθ ∈ C2N×2N

(with parameters θ ) to this initial state vector. In practice, U is implemented
by sequentially applying quantum gates: U = UG · · ·U2U1. A quantum gate implements a
simple unitary transform Uk that maps a state vector |ψ⟩ to a new state vector |φ⟩=Uk |ψ⟩.
During training, we optimise for the best set of parameters θ of these gates.

We next discuss hardware-efficient gates that can be directly realised in quantum hard-
ware. The parameter-free I, X-, Y -, and Z-Pauli gates act on a single qubit. The I gate is an
identity map, while the X , Y , and Z gates rotate the qubit by 180◦ around the correspond-
ing axis. The parametrised Pauli rotation gates RX ,RY ,RZ rotate the qubit by a given angle
around the corresponding axis. For example, RX (θ=20◦) rotates the qubit by θ=20◦ around
the X-axis, where θ is the parameter of the gate.

The controlled rotation gates CRX , CRY , and CRZ work on two qubits and they thus
modify the entanglement of these qubits. One qubit acts as the control qubit: If it is in state
|0⟩, then the identity map is applied to the other qubit (called the target qubit); and if it is
in state |1⟩, then RX , RY , or RZ are applied to the target qubit. Importantly, if the control
qubit is in a superposition, both operations are applied to the target qubit according to the
superposition.

Fig. 3 shows the notation of these gates. Note that they form a universal set of gates
[2]: They are enough to approximate any unitary transformation arbitrarily well as a finite
sequence of them. A gate can occur more than once in the sequence and can be applied to
any of the qubits each time. We also note that since gates are unitary transforms, they are
reversible. In fact, each of these gates happens to be its own inverse (e.g. (CRX (20◦))† =
CRX (−20◦)).
Output Measurement. Lastly, we measure each of the N qubits in a particular computa-
tional basis (typically along the Z-axis, which is also the basis we use in Sec. A.1), collapsing
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the state vector into a binary vector of length N.

A.3 Circuit Design and Barren Plateaus
One widespread challenge when optimising the parameters θ of a quantum circuit are barren
plateaus [1]. In some cases, the quantum nature of the task considered induces a partic-
ular circuit design and parameter choices, e.g. in quantum chemistry. Unfortunately, this
approach is not feasible for generic tasks that are not inherently quantum-related. Instead,
we need to follow the heuristic approach of designing generic circuits that can be efficiently
implemented in hardware. In this heuristic setting, we usually follow a classical gradient-
based optimisation routine that uses a cost function to iteratively compute updates to the
parameters. Crucially, using more and more gates or qubits in generic designs leads to a
loss landscape that is virtually flat (a barren plateau) in most places. The resulting per-
parameter derivatives are essentially random, with smaller and smaller magnitudes and vari-
ances. These uninformative, vanishing gradients hinder the optimisation and thus restrict the
size of the quantum circuits, limiting the expressibility.

A.4 Optimising Quantum Circuits
A further challenge unique to quantum circuits is that gradient-based optimisation inherently
scales badly on real quantum hardware. Ultimately, this is because measurement irreversibly
collapses the state. Thus, the parameter shift update rule requires evaluating the loss twice
per parameter, which scales much worse than, for example, back-propagation on classical
hardware. We avoid this issue in practice by resorting to simulation on classical hardware.
This allows us to recover from the measurement process without having to re-run the circuit
and we can thus apply back-propagation. In addition, simulation avoids noise, which remains
prominent in contemporary quantum hardware.

B Normalisation Scheme
The dataset is a set of N classical 3D point clouds [{v j

i ∈ R3}V−1
i=0 ]N−1

j=0 , each with V vertices.
The probability vector containing the amplitudes restricts the output vector to the positive
octant. To combat this, we take several steps to keep the raw input data within the positive
octant as well.

We first define an axis-aligned bounding box (vmin,vmax) across the entire dataset. This
is done by defining the minimum and maximum values along each axis:

vmin,a = min
j=0,...,N−1
i=0,...,V−1

v j
i,a, (1)

vmax,a = max
j=0,...,N−1
i=0,...,V−1

v j
i,a, (2)

where v j
i,a ∈ R is the coordinate of vertex v j

i along axis a ∈ {x,y,z}.
To achieve isotropic re-scaling, we turn the bounding box into a cube with side length

R ∋ s = maxa∈x,y,z vmax,a − vmin,a. We first shift the data and then re-scale it to get the final
normalised dataset: [

{ṽ j
i }

V−1
i=0

]N−1

j=0
=

[{
v j

i −vmin

s

}V−1

i=0

]N−1

j=0
. (3)

Citation
Citation
{McClean, Boixo, Smelyanskiy, Babbush, and Neven} 2018



RATHI ET AL.: QUANTUM AUTO-ENCODING OF 3D POINT CLOUDS—SUPPLEMENT 5

Figure 4: “Inverse” Scheme for Blocks. F , on the left, uses the basic block B architecture.
Its inverse, S, is on the right. Here, S uses the random initialisation.

C Circuit Design
Fig. 4 visualises the “inverse” architecture type.
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