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Goal: Can we unify the learning of a lightweight sub-network along with a End-to-End Unification Pipeline for SSL and DC
dense network from scratch and in a completely self-supervised fashion?
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» Computationally expensive training strategies make self-supervised learning Lssi Lo | - | \
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» We present a novel perspective of unifying the learning of dense and

lightweight networks by exploiting a symmetric joint embedding architecture
of the SSL paradigm.

» Our approach comprises of training a dense branch and sparse branch
derived from dense branch via gating mechanism during pre-training only.

» Both the branches share different batch-normalization layers, because

» We demonstrate that a single encoder can be exploited as a dense as well _ e
each branch have different batch statistics.

as a lightweight network. This not only reduces computational overhead
during training but also gives enough flexibility to use a single network and

D ) » We exploit VICReg [1] as our SSL-objective as it regularizes each branch
exploit it accordingly.

independently making it suitable for the task at our end.
» This unification preserves feature quality across different experimental

settings.
Quantitative Results Qualitative Results
Baselines: To exhaustively compare the performance of the dense and gated models | | |

we consider VICReg [1] as an SSL dense baseline while VICReg augmented with
sparsity loss Lg (following Krishna et al. [2]) serves as a gated baseline.
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» The lightweight gated network achieves improved performance across all

datasets and target budgets (f,) as compared to Baseline-2 [2], with a
negligible drop at t; = 50% for CIFAR-10 only.
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Figure 2: Qualitative analysis: UMAP embeddings of the learned representations:
lightweight gated network (fop row), while dense network (bottom) row over different target

> The performance gain IS Comp-ensated by a S“ghtly smaller reduction budgets #;. This is compared with embeddings of VICReg (dense) trained without any sort
in FLOPs as compared to Baseline-2 [2]. of sparsity. Best viewed in color.

» Another important aspect of our learning method is the performance of|| Limitations
the dense (fy) model. Aim is to achieve fewer fluctuations with varying
t, with a performance equivalent to Baseline-1 [1]. However, we find
that the performance of the dense network (this work) is slightly below|| » No constraints to enforce more conditional computation during inference.
the performance of the dense Baseline-1 [1].

» Dense model performance degrades and fluctuates with varying (¢,).
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