Unifying Synergies between Self-supervised Learning and Dynamic Computation

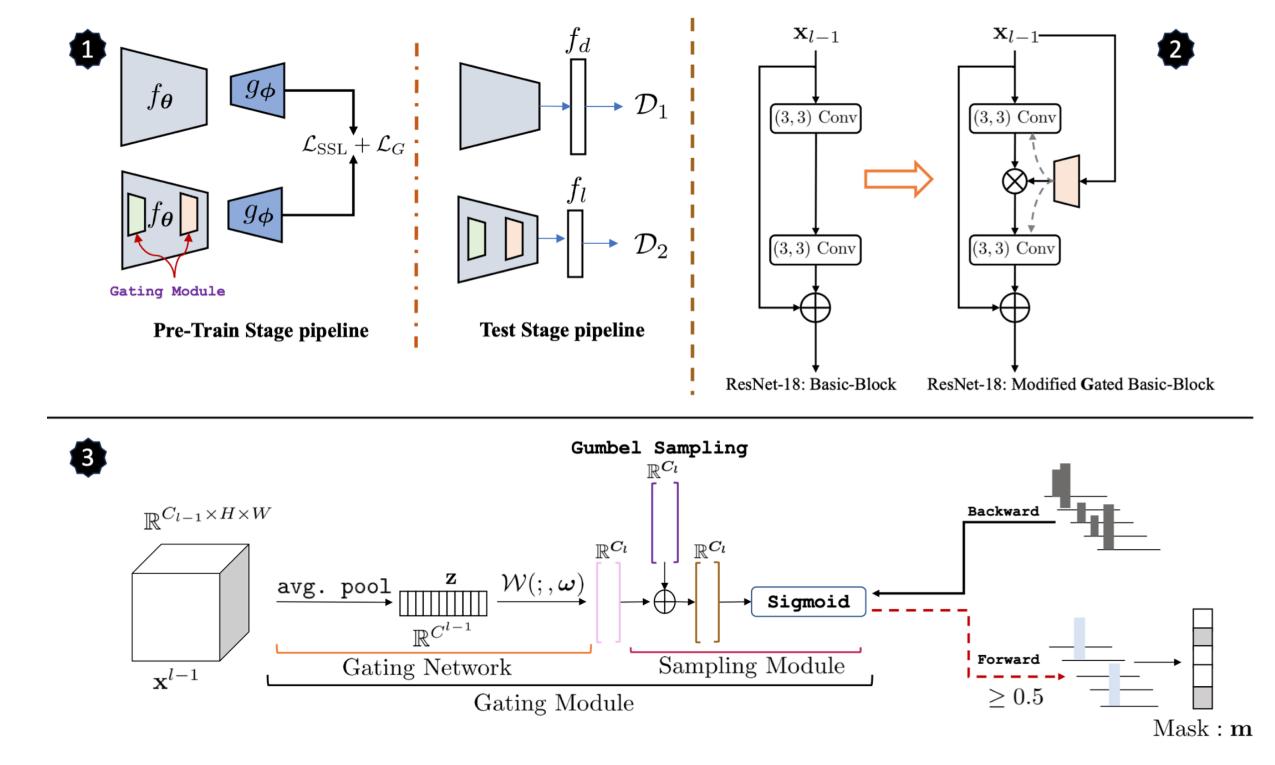
Tarun Krishna, Ayush Rai, Alexandru Drimbarean, Eric Arazo, Paul Albert, Alan F. Smeaton, Kevin McGuinness and Noel O'Connor

Goal: Can we unify the learning of a lightweight sub-network along with a dense network from scratch and in a completely self-supervised fashion?

Motivation:

Computationally expensive training strategies make self-supervised learning (SSL) impractical for resource constrained industrial settings.

End-to-End Unification Pipeline for SSL and DC



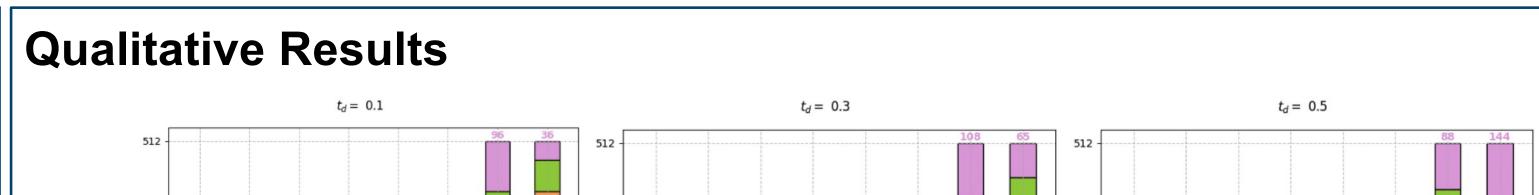
- Knowledge distillation (KD), dynamic computation (DC) and pruning are often used for obtaining lightweight models, but this requires multiple finetuning steps of a large pre-trained model, posing computational challenges.
- Downstream tasks are diverse and vary widely any change in the task requires repeating the procedure multiple times, reducing efficiency and transferability.

Key Contributions:

- We present a novel perspective of unifying the learning of dense and lightweight networks by exploiting a symmetric joint embedding architecture of the SSL paradigm.
- We demonstrate that a single encoder can be exploited as a dense as well as a lightweight network. This not only reduces computational overhead during training but also gives enough flexibility to use a single network and exploit it accordingly.
- This unification preserves feature quality across different experimental settings.
- Our approach comprises of training a dense branch and sparse branch derived from dense branch via gating mechanism during pre-training only.
- Both the branches share different batch-normalization layers, because each branch have different batch statistics.
- We exploit VICReg [1] as our SSL-objective as it regularizes each branch independently making it suitable for the task at our end.

Quantitative Results

Baselines: To exhaustively compare the performance of the dense and gated models we consider VICReg [1] as an SSL *dense* baseline while VICReg augmented with sparsity loss L_G (following Krishna et al. [2]) serves as a *gated* baseline.



	VICReg			VICReg-Gating		VICReg-Dual-Gating		
	Baseline-1			Baseline-2		this work		
	Bardes et al. [4]			Krishna <i>et al</i> . [44]				
Dataset	Dense	FLOPs	$\mathbf{t}_d(\%)$	Gated	FLOPs R.	Dense ↑	Gated ↑	FLOPs R. ↑
			10%	87.75 ± 0.03	85.92%	$88.99 \pm 0.04 (\downarrow 2.12)$	$88.94 \pm 0.06 (\downarrow 2.17) (\uparrow 1.19)$	81.49% (↓ 4.43)
CIFAR-10	91.11 ± 0.03	7.03E8	30%	89.49 ± 0.04	69.27%	$90.38 \pm 0.04 \ (\downarrow 0.73)$	$90.27 \pm 0.03 \ (\downarrow 0.84) \ (\uparrow 0.78)$	66.43% (\ 2.84)
			50%	90.70 ± 0.04	51.62%	$90.20 \pm 0.02 \text{ (}\downarrow 0.91\text{)}$	$90.40 \pm 0.06 \ (\downarrow 0.71) \ (\downarrow 0.30)$	49.02% (\ 2.60)
			10%	82.48 ± 0.15	82.85%	$84.29 \pm 0.21 (\downarrow 1.86)$	$83.29 \pm 0.05 (\downarrow 2.86) (\uparrow 0.81)$	78.34% (\ 4.51)
STL-10	86.15 ± 0.10	3.33E8	30%	84.16 ± 0.11	68.38%	$84.90 \pm 0.05 \ (\downarrow 1.25)$	$84.85 \pm 0.04 \ (\downarrow 1.30) \ (\uparrow 0.69)$	65.24% (\ 3.14)
			50%	85.40 ± 0.20	49.93%	$85.75 \pm 0.02 (\downarrow 0.40)$	$85.72 \pm 0.02 \ (\downarrow 0.43) \ (\uparrow 0.32)$	48.41% (\ 1.52)
			10%	63.12 ± 0.09	84.82%	$65.21 \pm 0.06 \ (\downarrow 0.65)$	$64.31 \pm 0.08 \ (\downarrow 1.55) \ (\uparrow 1.19)$	81.71% (↓ 3.11)
CIFAR-100	65.86 ± 0.10	7.03E8	30%	65.41 ± 0.09	68.68%	$65.90 \pm 0.10 (\uparrow 0.04)$	$65.64 \pm 0.00 \ (\downarrow 0.22) \ (\uparrow 0.23)$	66.83% (\ 1.85)
			50%	65.75 ± 0.12	50.04%	$66.41 \pm 0.05 \ (\uparrow 0.55)$	$66.40 \pm 0.14 \ (\uparrow 0.54) \ (\uparrow 0.65)$	49.06% (\ 0.98)
			30%	74.04 ± 0.09	67.95%	$75.12 \pm 0.07 (\downarrow 2.62)$	$75.04 \pm 0.10 (\downarrow 2.17) (\uparrow 1.00)$	64.98% (\ 2.97)
ImageNet-100	77.74 ± 0.12	1.81E9	50%	75.83 ± 0.07	50.11%	$76.42 \pm 0.26 \ \textbf{(\downarrow 1.32)}$	$76.24 \pm 0.12 ~(\downarrow 1.51) ~(\uparrow 0.41)$	47.69% (1 2.42)

- ➤ The lightweight gated network achieves improved performance across all datasets and target budgets (t_d) as compared to Baseline-2 [2], with a negligible drop at t_d = 50% for CIFAR-10 only.
- The performance gain is compensated by a slightly smaller reduction in FLOPs as compared to Baseline-2 [2].
- > Another important aspect of our learning method is the performance of the **dense** (f_{θ}) model. Aim is to achieve fewer fluctuations with varying t_d with a performance equivalent to Baseline-1 [1]. However, we find that the performance of the dense network (this work) is slightly below

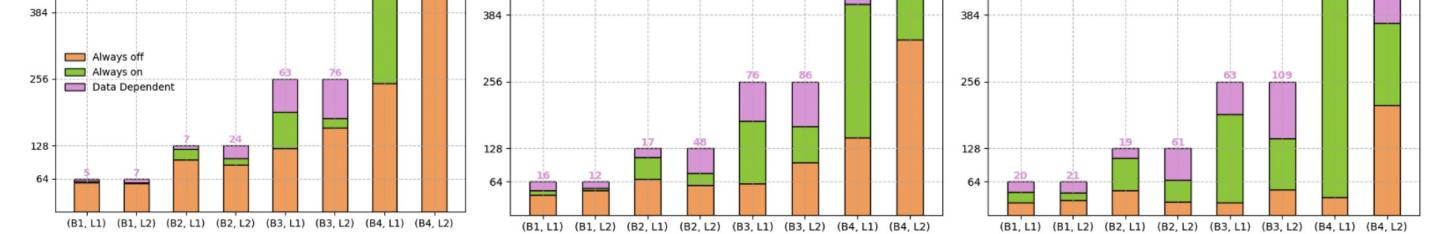
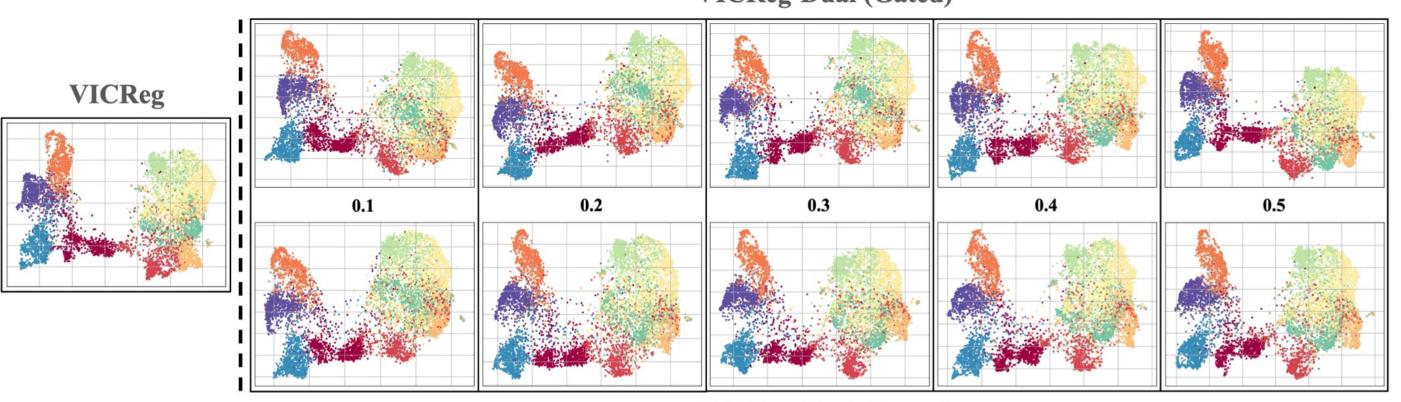


Figure 1: Learned channel distribution for CIFAR-100 with varying t_d .



VICReg-Dual (Gated)

VICReg-Dual (Dense)

Figure 2: Qualitative analysis: UMAP embeddings of the learned representations: *lightweight* gated network (*top* row), while dense network (*bottom*) row over different target budgets t_d . This is compared with embeddings of VICReg (dense) trained without any sort of sparsity. Best viewed in color.

Limitations

- > Dense model performance degrades and fluctuates with varying (t_d) .
- > No constraints to enforce more conditional computation during inference.

the performance of the dense Baseline-1 [1].

The learned structure is similar to dense (VICReg [1]) at a very low budget.

References Bardes, Adrien, Jean Ponce, and Yann LeCun. "Vicreg: Variance-invariation

Bardes, Adrien, Jean Ponce, and Yann LeCun. "Vicreg: Variance-invariance-covariance regularization for selfsupervised learning." *arXiv preprint arXiv:2105.04906* (2021).

 Krishna, Tarun, et al. "Dynamic Channel Selection in Self-Supervised Learning." 24th Irish Machine Vision and Image Processing Conference. 2022.

Acknowledgements: This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant number 18/CRT/6183, co-funded by the European Regional Development Fund and Xperi.

