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Table S1: Comparison of geometry painting with various methods on ShapeNetSem [3]
dataset measured through Kernel Inception Distance (KID ↓) [1] metric with various feature
extractors. Standard deviations are given in small font for all values. Lower values are better.
KID ↓ [1]
Features
Multiplier

Methods

All
(11992)

Misc.
(2912)

Chair
(682)

Lamp
(655)

ChstDrw.
(503)

Table
(416)

Couch
(405)

Computer
(241)

TV
(229)

WallArt
(220)

Bed
(218)

Cabt.
(216)

Inception
[1, 5, 13]
×0.01

Orig. texture [3] 1.19±0.04 1.18±0.09 1.40±0.20 2.03±0.38 7.89±0.79 1.61±0.26 4.47±0.56 2.76±0.47 3.04±0.40 1.84±0.52 2.72±0.36 5.98±0.69

Latent-Paint [8] 1.31±0.05 1.37±0.11 2.02±0.25 1.95±0.36 4.52±0.54 1.05±0.21 4.26±0.39 3.84±0.35 4.17±0.34 3.81±0.58 2.14±0.32 4.19±0.47

TEXTure [12] 0.75±0.04 0.71±0.08 1.19±0.20 1.61±0.35 1.79±0.38 1.97±0.32 2.37±0.48 2.14±0.33 2.36±0.31 2.10±0.41 1.90±0.32 1.54±0.29

Ours 0.44±0.03 0.38±0.06 0.65±0.18 0.80±0.24 1.88±0.48 0.94±0.22 1.14±0.30 1.74±0.36 1.06±0.24 0.53±0.16 1.09±0.22 1.32±0.41

CLIP
[6, 10]
×0.01

Orig. texture [3] 9.33±0.26 8.92±0.50 13.1±1.38 14.6±1.38 21.1±1.71 13.0±1.19 18.7±1.73 8.36±1.12 14.3±1.41 5.89±1.22 14.2±1.32 17.7±1.76

Latent-Paint [8] 7.87±0.18 7.87±0.37 9.36±0.57 6.44±0.67 17.1±1.23 5.47±0.48 13.1±0.85 12.1±0.81 11.2±0.67 10.7±0.99 10.5±0.91 15.7±1.20

TEXTure [12] 3.18±0.09 3.04±0.21 5.12±0.46 4.84±0.62 5.81±0.67 5.67±0.52 4.82±0.60 4.68±0.43 4.63±0.47 3.99±0.65 5.61±0.50 4.40±0.48

Ours 1.36±0.06 1.30±0.13 1.69±0.32 1.51±0.27 3.73±0.70 1.90±0.34 2.07±0.39 2.98±0.61 2.14±0.48 0.96±0.27 2.09±0.36 3.12±0.62

DINOv2
[9]
×1.0

Orig. texture [3] 2.40±0.06 2.36±0.15 3.65±0.37 4.95±0.47 11.9±0.98 5.94±0.61 14.1±1.46 5.42±0.85 9.80±0.96 3.75±0.75 7.56±0.69 9.74±0.79

Latent-Paint [8] 1.01±0.02 1.04±0.05 1.85±0.25 2.09±0.25 5.51±0.51 1.62±0.25 6.61±0.83 5.49±0.54 8.87±0.71 3.37±0.49 4.26±0.50 5.21±0.52

TEXTure [12] 0.53±0.02 0.50±0.03 1.18±0.24 1.76±0.27 2.56±0.43 1.67±0.27 3.32±0.62 3.72±0.50 3.97±0.61 2.17±0.44 2.21±0.31 2.37±0.39

Ours 0.38±0.01 0.35±0.03 0.63±0.21 1.07±0.21 2.01±0.48 1.03±0.21 1.90±0.64 3.14±0.66 2.24±0.43 0.86±0.19 1.08±0.23 1.58±0.37

S1 Large-Scale Study of ShapeNetSem
Out of 12,288 models in the dataset, we processed 11,992 with all methods. The remaining
296 models either had flat geometry or could not be processed by the Latent-Paint [8] pipeline,
TEXTure [12], or both. The failure cases happened most commonly due to the complex
geometry not fitting 16GB GPU RAM within the respective method pipeline or failures in
xatlas texture UV unwrapping module [7]. Our method produced results consistently even
on these models, but for a fair comparison, we excluded these models completely.

In addition to the FID [5] evaluation from Tab. 1 of the main paper, we provide a
quantitative evaluation of all pipelines on ShapeNetSem with the KID metric [1] in Tab. S1.

The ability of our method to handle complex geometry, low memory footprint, weak
dependence on the geometry format or the rendering pipeline, and potentially unknown
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Quality Quality

Realism Realism

Figure S1: Subjective Study. Left: User instruction with quality and realism judgment
examples; Right: Two validation questions “Which one is better?” shared among all subjects
to ensure engagement (the right column answers were expected for a pass).

texture coordinates – all these properties make our method a reliable go-to solution for 3D
assets revamping.

S2 Subjective User Study
We conducted a limited crowd-sourced perceptual comparison between Latent-Paint [8],
TEXTure [12], and our method. The study was based on 50 randomly sampled models from
10 categories, c.f. Tab. S1. Subjects were instructed (Fig. S1, left) to analyze and vote for
higher quality and realism after observing a full 360◦ spin of models painted with a pair of
methods, side by side. Each subject submitted 20 votes, plus 2 validation questions with
predefined correct answers (Fig. S1, right). 35 subjects participated in our study, of which
29 (83%) passed the validation. 638 votes were collected, ensuring at least 3 votes for every
pair, and aggregated into preference scores with the Crowd Bradley-Terry [2] model. The
resulting scores were (log-scale, up to additive constant, 95% confidence intervals, higher
is better): SLatent−Paint = 0.15±0.15,STEXTure = 0.30±0.11,Sours = 1.86±0.13. The scores agree
with the quantitative results.

S3 ShapeNet Rendering Settings
To facilitate a fair comparison of different methods on the ShapeNetSem dataset [3], we
choose the mesh rendering settings in all pipelines such that the output result is adequate for
all methods. Notably, TEXTure [12] relies on mesh normals to determine inpainting regions.
However, a subset of ShapeNetSem [3] meshes have faces with inappropriately oriented
surface normals. For these meshes, directly passing them as input to TEXTure [12] produces
corrupt texturing.

To address this issue, we utilize back-face culling of mesh to disable the rendering of mesh
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Figure S2: Left: Rendering Settings Comparison with TEXTure [12] method. Back-face
culling achieves the best result compared with the original1 and double-face rendering settings.
Middle: Visibility Score Refinement produces more realistic details on surfaces seen at sharp
angles, such as the ear. Right: Low number of generated views (4) leads to poor coverage of
the input geometry, 18 results in over-smoothing, and 9 is a trade-off.

faces that are oriented away from the camera. We build our method on top of PyTorch3D [11],
which provides a built-in implementation of back-face culling. However, since both Latent-
Paint [8] and TEXTure [12] pipelines rely on the Kaolin renderer [4], which did not implement
back-face culling as of the time of writing, we implemented back-face culling in software.
This allowed us to address the rendering discrepancy and level the settings for all pipelines.

We experimented with double-face rendering as an alternative approach to resolving face
orientation issues. However, the result of using double-face rendering is worse than that of
using back-face culling, as seen in Fig. S2 (left). We suspect this is due to areas of the mesh
having overlapping front-facing faces in the double-face rendering setting, thereby negatively
affecting texture back-projection in the TEXTure [12] method. Overall, our rendering protocol
is chosen to maximize the output quality of the pipelines relying on differential rendering
under complex geometry.

S4 Ablation: Inpainting Zoning
Inpainting zoning works in areas of the mesh that face away from the camera in one generated
view so that they can be further refined in the subsequent views. Fig. S2 (middle) shows
that our refinement scheme brings more details to the areas of the model with challenging
visibility constraints.

S5 Ablation: Number of Input Views
We show a qualitative comparison between models painted using various numbers of input
views in Fig. S2 (right). With just 4 input views, we find holes and artifacts on the object’s
surface. With 18 views, the shape is smooth, but the generated color lacks detail. The choice
of 9 views achieves the best quality.

S6 Prompt Augmentation
Our method transparently exposes the style guidance functionality of the underlying generative
models. It permits prompt augmentation, enabling greater variety in the generated painting
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Figure S3: Style Specifier Guidance. In the given examples, prompts take the following
form: “A photo of a {{material}} dresser” (top) and “A photo of a {{color}} dragon” (bottom).

while preserving 3D consistency. Specifically, our pipeline extends the input object description
prompt as follows: “A photo of a {{modifier}} {{object}}, {{dir}} view”. The “{{modifier}}” style
specifier term could be the color or the material of the object. In the same vein as text guides
image generation models, the texture of our 3D models changes according to the modifier, as
shown in Fig. S3.
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