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A: Experiments on More Query-based Black-box Attacks
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(a) NES Attack
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Fig. 1: Randomness-based Defense on ViT-small against Query-based Black-box
Attacks. Besides SOTA attacks, we provide the results on more attack methods.
In each subfigure, the x-axis and y-axis are the clean accuracy (Accu in %) and
the attack failure rate (AFR in %), respectively. Each of the lines corresponds to
a type of defense. The three red lines are our non-additive randomness defense
on the model. Each point in the line corresponds to a trade-off point between
Accu and AFR. Our methods can achieve a better trade-off than others.
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(a) Square Attack
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(b) HSJA
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Fig. 2: Randomness-based Defense on ViT-tiny against Query-based Black-box
Attacks. We also provide the results on ViT models with different sizes. Our
methods still achieve a better trade-off than others.
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B: Hyper-parameters of Query-based Black-box Attacks

Table 1: Hyper-parameters of Square Attack [1]

Maximum number of iterations 100

Maximum perturbation 0.03

Initial fraction of elements 0.8

Number of restarts 1

Table 2: Hyper-parameters of HSJA [4]

Maximum number of iterations 20

Maximum number of evaluations for estimating gradient 10000

Initial number of evaluations for estimating gradient 100

Maximum number of trials for initial generation of AE 100

Table 3: Hyper-parameters of GeoDA [8]

Dimensionality of 2D frequency space (DCT) 20

Maximum number of iterations 4000

binary search tolerance 0.0001

Variance of the Gaussian perturbation 0.0002
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Table 4: Hyper-parameters of NES Attack [7]

Maximum number of trials per iteration 1000

Maximum perturbation 0.05

Maximum number of evaluations for estimating gradient 100

Variance of the Gaussian perturbation 0.001

Table 5: Hyper-parameters of SimBA [5]

Norm of Perturbation L2 norm

Maximum Perturbation 0.2

Dimensionality of 2D frequency space (DCT) 40

Maximum number of iterations 10000

ordering for coordinates random

Table 6: Hyper-parameters of Boundary [2]

Initial step size for the orthogonal step 0.01

Initial step size for the step towards the target 0.01

Factor by which the step sizes are multiplied 0.667

Maximum number of iterations 5000

Maximum number of trials per iteration 25

Number of samples per trial 20

Maximum number of trials for initial generation of AE 100

Stop attack if perturbation is smaller than 0
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C: Details and Setting of Defense Methods

The details and setting of the baselines and our approaches are shown as follows.
Small Noise Defense (SND). [3] proposes to defend against query-based

black-box attacks by adding random Gaussian noise to inputs. The variance of
the gaussian noise controls the strength of the noise, which balances the trade-off
between robust accuracy and clean accuracy. We report the multiple results on
different variance values, which are in [0.001, 0.1].

Parametric Noise Injection (PNI). [6] proposes to add layer-wise train-
able Gaussian noise to the activation or weight of each layer. In this work, we
add random Gaussian noise to activations of all layers without retraining to
keep a fair comparison. Only the inference stage is changed. Similarly, the vari-
ance of the Gaussian noise balances the trade-off between robustness and clean
performance. The variance values we use are in [0.001, 0.2].

Random Resizing and Padding (R&P). [9] proposes a pre-processing-
based defense method where the input is randomly resized and padded. The
random resize and padding are different in different forward passes. The input
image with a fixed size (i.e. 224×224) is resized to a smaller size (e.g. 208×208)
and padded to the original size. The downsampled sizes control the trade-off
between robust accuracy and clean accuracy, which are in [160, 218].

Patch Random Permutation (PRPerm). In our PRP, the positional
embedding of a certain percentage of patches is randomly permuted. The per-
mutation of positional embedding is equivalent to the permutation of the cor-
responding input patches. The percentage of the permuted patches controls the
trade-off. That too many patches are permuted leads to better robustness, but
unsatisfying performance on clean inputs. Note that the permutation only hap-
pens before the first self-attention module where positional embedding is avail-
able. The percentage values we use are in [1%, 10%].

Patch Random Drop (PRDrop).We propose to randomly drop the input
patches of self-attention modules to mislead the query-based black-box attacks.
The slimming of input patches only slightly decreases the model performance
since there is redundant information in inputs, as shown in recent work. Note
that the patch drop operation is different from the standard dropout operation
where the dropped activations are set to zero. Ours removes part of the patches
and keeps the same patches in the rest of the layers. The probability to drop
patches controls the trade-off. The probability values we use are in [1%, 10%].

Patch Attention Perturbation (PAttnPert). Besides the non-additive
randomness in the inputs of self-attention module, we also propose to integrate
the non-additive randomness in the Attention of self-attention module. Con-
cretely, we propose to reduce the dimensions of keys and queries by randomly
removing some of them. The keys and the queries of patches can still be used
to compute the attention since only the dot product between them is required
to describe their similarity. In our approach, we propose to randomly remove
a certain percentage of dimensions of keys and queries. Such non-additive ran-
domness also demonstrates the high effectiveness against query-based black-box
attacks. Similarly, the percentage to remove dimension controls the trade-off.
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D: Combination of Defense Strategies
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(a) Combination of Our Defense

Fig. 3: Combination of Randomness-based Defense on ViTs. We also study the
different combinations of the randomness-based defense methods. We show the
combinations of our methods, i.e., three different types of randomness-based
defense on models. The combination achieves the average defense effect.
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