
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045

AUTHOR(S): 1

AGMDT: Virtual Staining of Renal Histology
Images with Adjacency-Guided
Multi-Domain Transfer Supplementary
Materials

BMVC 2023 Submission # 409

A Loss Function
To incorporate adjacent layer information as supervision, we design the following loss func-
tion. To make it easier to explain, we define the following variables:

x refers to the input image, while ỹ represents its corresponding adjacent image.
Xo represents the original staining domain, Lt represents the target label, and Lo repre-

sents the original label.
G represents the generator and D represents the discriminator. A represents the Adjacency-

guided Encoder, S represents the encoder-decoder module for de-stain and re-stain, while C
represents the style code generator.

The generator’s loss function consists of six components, and can be divided into three
parts: basic loss, auxiliary loss, and adjacency-guided loss. The basic loss, which includes
adversarial loss lG

adv, classification loss lG
cls, cycle consistency loss lcyc, and identity preserving

loss lidt , is used to achieve fundamental multimodal stain transfer:

• adversarial loss lG
adv:

ladv(G) = Ex∼Xo [(Dadv(S(x,C(Lt))−1)2] (1)

• classification loss lG
cls:

lcls(G) = Ex∼Xo [(Dcls(S(x,C(Lt))−1)2] (2)

• cycle consistency loss lcyc:

lcyc(G) = Ex∼Xo [∥x−S(S(x,C(Lt),C(Lo))∥1] (3)

• identity preserving loss lidt :

lidt(G) = Ex∼Xo [∥x−S(x,C(Lo))∥1] (4)
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Auxiliary loss, which includes lG
ηadv, lG

ηcls, is used to improve the performance of stain
transfer, and the setting is the same as that in UMDST[3].

Adjacency-guided loss lad j measures the discrepancy between the generated data and its
corresponding adjacency data. The loss function is formulated as follows:

lG = λ1 × (lG
adv + lG

cls + lcyc + lidt)+λ2 × (lG
ηadv + lG

ηcls)+λ3 × lad j (5)

Here, we set λ1 = λ2 = λ3 = 10.
As for adjacency-guided loss, we denote the Adjacency-guided Encoder as A, the encoder-

decoder module for de-stain and re-stain as S and the formula for computing lad j is as fol-
lows:

lad j = Ex,ỹ
[
∥∇A(S(x), ỹ)∥2]+Ex,ỹ [∥ỹ−S(x)◦A(S(x), ỹ)∥1] (6)

B Blind Evaluation of Staining Results

Real renal tissue slices
(Our dataset and external dataset)

Images generated by virtual staining

Three renal 
pathologists with 

more than five years 
of experience

• Staining quality
• Key structures

Figure 1: An overview of the blind evaluation of staining results.

The goal of virtual staining is to enable pathologists to use the generated images directly
for diagnosis, just like conventional stained sections. Therefore, we designed a compre-
hensive experiment in which pathologists were invited to evaluate the quality of images
generated by virtual staining methods.

We invited three pathologists with more than five years of clinical experience to partic-
ipate in the experiment. The evaluation index of the experiment is divided into two items,
namely the staining quality and the key structure. The pathologists scored each item from 0
to 5. The higher the score, the better the image quality in that item, and the average score
of the two items is taken as the overall quality score. In principle, the clinical diagnostic
requirements are met with a score of 4 or above. The corresponding relationship between
the score and the degree of staining is as follows:
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• 4-5: The staining style and clarity of the key structure basically meet the diagnostic
needs.

• 3-4: The staining style is not good, the structure is not well displayed, or although
the structure is displayed, the relationship between cells and the glomerular basement
membrane is not well displayed.

• 2-3: The internal structure is incorrect and the style is not good.

• Below 2: The structure is completely wrong.

4-5 3-4

2-3 0-2

Figure 2: The corresponding relationship between the score and the degree of staining.

In order to facilitate the judgment of the pathologists, the dataset we provide consists of
glomerular images, including three parts: the images generated by different virtual staining
methods, the images from our glomerulus-aligned renal histological dataset, and the images
of real renal tissue from external dataset. We randomly divide the data to be tested into
three groups and ensure that each group of data is scored by two pathologists, i.e., each
pathologist scores two groups of data, and the final score of each group of data is the average
of the scores of the two pathologists.

Table 1: Evaluation of staining results by pathologists

Masson PASM PAS

Real(our part) 4.25 4.92 4.33

Real(external part) 3.48 4.77 4.46

FUNIT[4] 0.69 1.42 2.25

MUNIT[1] 2.67 0.75 2.42

UGATIT[2] 2.67 3.67 3.08

UMDST[3] 4.10 4.09 4.17

AGMDT 4.59 4.17 4.25

The experimental results are shown in Table 1. Among the virtual staining methods,
AGMDT has the best performance. The images generated by AGMDT have achieved more
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than 4 points in all three types of staining, and the staining level is close to that of real renal
tissue slices. Especially in Masson, it has achieved the highest score.
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