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A Loss Function

To incorporate adjacent layer information as supervision, we design the following loss func-
tion. To make it easier to explain, we define the following variables:

x refers to the input image, while y represents its corresponding adjacent image.

X, represents the original staining domain, L, represents the target label, and L, repre-
sents the original label.

G represents the generator and D represents the discriminator. A represents the Adjacency-
guided Encoder, S represents the encoder-decoder module for de-stain and re-stain, while C
represents the style code generator.

The generator’s loss function consists of six components, and can be divided into three
parts: basic loss, auxiliary loss, and adjacency-guided loss. The basic loss, which includes
adversarial loss lade, classification loss chls’ cycle consistency loss /¢y, and identity preserving
loss I;4, is used to achieve fundamental multimodal stain transfer:

¢ adversarial loss lgdv:

laav(G) = Exex, [(Daav(S(x,C (L)) — 1)*] (1)
* classification loss /G :

lets(G) = Exx, [(Dats(S(x,C (L)) = 1)7] @)
* cycle consistency 10ss /oy,

leye(G) = Exex, [[lx = S(S(x,C(Ls), C(Lo)) 1] 3)

e identity preserving loss ;;;:

liar(G) = Exnx, [|[x = S(x,C(Lo)) 1] S
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Aucxiliary loss, which includes lﬁa v lﬁcls, is used to improve the performance of stain
transfer, and the setting is the same as that in UMDSTI[3].
Adjacency-guided loss /,4; measures the discrepancy between the generated data and its

corresponding adjacency data. The loss function is formulated as follows:
lG = )ul X (lade + lCGls + lcyc + lidt) + )*2 X (lgadv + lTC];cls) + A’3 X ladj o
Here, we set 4| = A, = A3 = 10.
As for adjacency-guided loss, we denote the Adjacency-guided Encoder as A, the encoder-

decoder module for de-stain and re-stain as S and the formula for computing /,4; is as fol-
lows:

laagj = E5 [|IVA(S(x),9)I*] + E5[|[y — S(x) 0 A(S(x),5) 1] (6)
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Figure 1: An overview of the blind evaluation of staining results.

The goal of virtual staining is to enable pathologists to use the generated images directly
for diagnosis, just like conventional stained sections. Therefore, we designed a compre-
hensive experiment in which pathologists were invited to evaluate the quality of images
generated by virtual staining methods.

We invited three pathologists with more than five years of clinical experience to partic-
ipate in the experiment. The evaluation index of the experiment is divided into two items,
namely the staining quality and the key structure. The pathologists scored each item from 0
to 5. The higher the score, the better the image quality in that item, and the average score
of the two items is taken as the overall quality score. In principle, the clinical diagnostic
requirements are met with a score of 4 or above. The corresponding relationship between
the score and the degree of staining is as follows:
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e 4-5: The staining style and clarity of the key structure basically meet the diagnostic
needs.

e 3-4: The staining style is not good, the structure is not well displayed, or although
the structure is displayed, the relationship between cells and the glomerular basement
membrane is not well displayed.

» 2-3: The internal structure is incorrect and the style is not good.

¢ Below 2: The structure is completely wrong.

Figure 2: The corresponding relationship between the score and the degree of staining.

In order to facilitate the judgment of the pathologists, the dataset we provide consists of
glomerular images, including three parts: the images generated by different virtual staining
methods, the images from our glomerulus-aligned renal histological dataset, and the images
of real renal tissue from external dataset. We randomly divide the data to be tested into
three groups and ensure that each group of data is scored by two pathologists, i.e., each
pathologist scores two groups of data, and the final score of each group of data is the average
of the scores of the two pathologists.

Table 1: Evaluation of staining results by pathologists

Masson PASM PAS

Real(our part) 4.25 4.92 4.33
Real(external part) 3.48 4.77 4.46
FUNIT[4] 0.69 1.42 2.25
MUNIT[ 1] 2.67 0.75 2.42
UGATIT[2] 2.67 3.67 3.08
UMDST/3] 4.10 4.09 4.17
AGMDT 4.59 4.17 4.25

The experimental results are shown in Table 1. Among the virtual staining methods,
AGMDT has the best performance. The images generated by AGMDT have achieved more
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than 4 points in all three types of staining, and the staining level is close to that of real renal
tissue slices. Especially in Masson, it has achieved the highest score.
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