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A Appendix

A.1 Architecture

Encoder Decoder

4×4 conv. 32 stride 2 FC.256

4×4 conv. 32 stride 2 FC. 4×4×64

4×4 conv. 64 stride 2 4×4 deconv. 64 stride 2

4×4 conv. 64 stride 2 4×4 deconv. 32 stride 2

FC. 256 4×4 deconv. 32 stride 2

FC. 20 4×4 deconv. c stride 2

Table 4: The architecture details. “FC.” denotes fully connected layer, “conv.” denotes
convolutional layer, “deconv” denotes transposed convolution layer. c is the dimension of
color channel.

We use symmetric convolutional networks for encoders and decoders as shown in Ta-
ble 4. c = 1 for dSprites, and c = 3 for Shapes3D. All layers are activated by ReLU. The
final layer of encoder generates 10 variables for mean and 10 variables for the logvar.

A.2 Disentanglement-invariant Representations
In this section, we prove the proposed disentanglement-invariant transformation. Consider
that we have a new representation by multiplying a diagonal matrix: z′ =wz, w. We can
calculate the Covariance between any two latent variables:

Cov(wizi,w jz j) = E[(wizi −E[wizi])(w jz j −E[w jz j])]

=wiw j(E[z j]−E[zi]E[z j])

=wiw j Cov(zi,z j),

(8)

where the subscript denotes the index of latent variables. Note that we use a different notion
in this section to simplify the formula.

Then we can get the correlation coefficient by

ρ(wizi,w jz j) =
Cov(wizi,w jz j)√
Var[wizi]Var[w jz j]

= ρ(zi,z j).

(9)

Therefore, the correlation matrix will not change by multiplying a diagonal matrix w,w ̸=
0. The proposed transformation is disentanglement-invariant.

A.3 Estimation of I(z j;ci)

Given an inference network q(z|x), we use the Markov chain Monte Carlo (MCMC) method
to get samples from q(z) by the formula q(z) = q(z|x)p(x). We use 10, 000 points to
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Figure 5: Reconstruction from noise.

estimate q(z). Then, we discretize these latent variables by a histogram with 20 bins. After
discretizing one latent variable, we call a discrete mutual information estimation algorithm
to calculate I(w jz j;ci) by a 2D histogram.

A.4 Visualization
Latent Traversal. We compare DeVAE to others with latent traversals on Shapes3D and
dSprites. Each column shows the generated images by traversing one latent variable from -2
to 2. From Figure 6 and Figure 7, we can see that DeVAE has a lower entanglement level.
Note that only DeVAE disentangles object size isolated on Shapes3D.
Random Sampling. We random sample noise from Guassian distribution N (0,1) and
generate images from our disentanglement model trained on dSprites. As shown in Figure 5,
our model, generating heart, has a high reconstruction fidelity

A.5 CelebA
We further conduct experiments on a real dataset CelebA [15].
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Figure 6: Latent traversal on Shapes3D. ”back.“ denotes background color, “floor” denotes
floor color, “obj.” denotes object, and “wall” denotes wall color.
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Figure 7: Latent traversal on dSprites.


