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Abstract

Existing domain adaptation (DA) and generalization (DG) methods in object detec-
tion enforce feature alignment in the visual space but face challenges like object appear-
ance variability and scene complexity, which make it difficult to distinguish between
objects and achieve accurate detection. In this paper, we are the first to address the prob-
lem of semi-supervised domain generalization by exploring vision-language pre-training
and enforcing feature alignment through the language space. We employ a novel Cross-
Domain Descriptive Multi-Scale Learning (CDDMSL) aiming to maximize the agree-
ment between descriptions of an image presented with different domain-specific charac-
teristics in the embedding space. CDDMSL significantly outperforms existing methods,
achieving 11.7% and 7.5% improvement in DG and DA settings, respectively. Compre-
hensive analysis and ablation studies confirm the effectiveness of our method, positioning
CDDMSL as a promising approach for domain generalization in object detection tasks.
Our code is available at https://github.com/sinamalakouti/CDDMSL.

1 Introduction
The recent success of fully-supervised object detectors (FSOD) heavily relies on the as-
sumption that training data follows the same distribution as test data, which often fails in
real-world applications. Domain adaptation (DA) addresses distribution alignment between
a source and a particular target domain but struggles to generalize to domains unseen dur-
ing training, limiting its real-world applicability [26, 49, 58]. On the other hand, domain
generalization (DG) aims to learn a universal model that can generalize to any unseen do-
main. While DG has been studied in object recognition, DG in object detection (DGOD)
is still heavily understudied. Pioneering work [26] utilizes multiple fully annotated source
domains to learn domain-invariant features. However, obtaining multiple fully annotated
labeled datasets is a formidable challenge in object detection.

Fortunately, obtaining unlabeled data is less intricate, and a large volume is available. To
tackle the issue above, we formulate DGOD as a semi-supervised learning (SSL) paradigm,
using one fully annotated and an additional unlabeled source domain. While semi-supervised
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(a) Motivation (b) Consistency Objective

Figure 1: (a) Demonstrates that an image-captioning model, when trained with RegionCLIP,
fails to produce descriptions across different styles. In contrast, CDDMSL effectively main-
tains overall image semantics across domains. (b) Our consistency objective is designed to
preserve the overarching image semantics regardless of differing styles (green) while dis-
couraging unrelated descriptions (red).

domain generalization (SSDG) [28, 42, 59, 60] has been studied in image recognition, to the
best of our knowledge, this is the first work addressing SSDG in object detection.

Generally, existing DA and DG for object detection works learn invariant representations
or disentangle domain-specific representations by enforcing their objectives in the visual
space [9, 19, 25, 33, 33, 41, 49, 56]. However, disentangling domain-specific and domain-
invariant features in object detection is extremely difficult due to inherent challenges such as
variability in object appearance (e.g., size, shape), and scene complexity, which can make it
difficult to distinguish between objects and accurately detect them. We believe high-level in-
formation, such as object relations, visible object characteristics, or actions being performed,
can help perform better under extreme domain shifts. Extracting such contextual information
is infeasible using visual features solely, but textual descriptions offer a semantically denser
signal [10] that can help the model to focus on the underlying semantic information of the
data, resulting in better localization and recognition of objects in complex scenes. Also,
natural language descriptions provide more information than simple object labels; the lat-
ter may be ambiguous or insufficient. Thus, we enforce semantic consistency in the textual
descriptions of images to ensure that useful information is preserved across domains.

We believe that by incorporating natural language captions in object detection models,
the models can learn to associate object categories with their names and other semantic at-
tributes, such as actions, relations, and context. This can help the models better generalize
to new or unseen domains where objects’ visual appearance may differ from what was ob-
served in the training data. Note that previous works have shown the benefit of using image
captions in object detection tasks, such as improving the performance of weakly supervised
object detectors and generalizing over novel categories in open-vocabulary object detection
tasks [7, 15, 44, 52, 52, 54, 57]. However, to the best of our knowledge, this is the first work
to explore the benefits of incorporating image descriptions and vision-language pre-training
in the context of generalizability to unseen domains for object detection.

In this paper, we first make three observations: (i) vision-language models, such as
CLIP [36], have shown promise in improving generalizability in image recognition tasks,
(ii) captions contain rich semantic information that can be helpful in both object localization
and detection, and (iii) as illustrated in Fig. 1a, domain shift impacts the ability of image-
captioning models to produce semantically consistent descriptions for the same image with
different domain-specific characteristics (i.e., style). Based on these observations, we present
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a simple yet effective novel approach called Cross-Domain Descriptive Multi-Scale Learn-
ing (CDDMSL) for object detection, which enforces learning domain-invariant features on
the visual encoder through the language space. In particular, we first propose to initialize the
object detector’s backbone with RegionCLIP [57] weights, a state-of-the-art vision-language
model in object detection, and adopt its text classifier to facilitate supervised object detection
on the labeled data. Second, we exploit unlabeled data to learn domain-invariant features
while preserving the semantics. To this end, we utilize the vision-to-language module of
an image-captioning model to obtain descriptive features by projecting image features to the
language space. To ensure semantically consistent descriptions, we apply a contrastive-based
consistency objective over generated descriptive features of an image and its stylized version
synthesized by a style transfer model (shown in Fig. 1b). We enforce the contrastive objec-
tive in the embedding space, which is crucial for learning semantically consistent features,
as demonstrated in Sec. 4.2. We extend the proposed method to remedy existing domain bias
at both the image level and instance level [26, 57]. Note our proposed approach only impacts
the training and does not impose any computational overhead on the inference time.

Our experiments demonstrate that the proposed CDDMSL approach significantly out-
performs existing DG and DA methods on two object detection benchmarks. In partic-
ular, CDDMSL achieves 11.7% (28%) and 7.5% (20.8%) improvement over the Region-
CLIP (Faster-RCNN) in DG and DA settings, respectively, and significantly outperforms the
state-of-the-art methods. Moreover, we provide comprehensive analysis and ablation stud-
ies, highlighting the benefit of enforcing generalizability through language space and the
effectiveness of each component of the proposed method. Our findings indicate that CD-
DMSL is a promising approach for addressing the domain generalization challenge in object
detection, making it a valuable contribution to the field.

2 Related Works
Domain Adaptation for Object Detection. A common DA approach is to align the feature
space by adversarial learning or directly minimizing the distance between the feature distri-
butions in the visual space [5, 19, 33, 39, 56]. Many works utilize self-training and highly
confident predictions on the target (i.e., pseudo-labels) to progressively improve the model’s
performance on the target [9, 25, 33, 40]. For instance, [9, 25] leverage a Mean Teacher
framework [43] to produce the pseudo-labels by the teacher model and guide the student to
perform well on the target. MTOR [2] performs Mean Teacher to explore object relation
in region-level, inter-graph, and intragraph consistency. Another work utilizes an unpaired
image-to-image translation model to map the source data to target-like images to reduce dis-
tribution shift [3, 20, 33, 39, 55]. However, these methods require the pre-collection of target
data and fail when the target domain is unknown.

Domain Generalization in Object Detection. Unlike DA, there are not many works ad-
dressing domain generalization for object detection (DGOD). Initially, DIDN [26] relied on
fully-annotated source domains and adversarial learning to learn domain-invariant features
and disentangle domain-specific ones with the help of domain-specific encoders. However,
collecting multiple fully annotated source domains is cumbersome and time-consuming. To
alleviate this issue, Single-DGOD [49] extended single-domain generalization (SDG) for ob-
ject detection and employed self-distillation to disentangle domain-specific features. How-
ever, SDG methods rely on the quality of the labeled data and data augmentation techniques,
reducing their ability to generalize over a wider range of domains. Unlike Single-DGOD,
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we use unlabeled data along with only one labeled domain, i.e., semi-supervised domain
generalization (SSDG). Pseudo-labeling and data augmentation are some common SSDG
approaches. StyleMatch [60] propagates pseudo labels from the labeled domain to the un-
labeled domain, and the style transfer model is used for data augmentation. MixStyle [59]
inserted a plug-and-play augmentation module in convolutional layers to mix feature statis-
tics between labeled and pseudo-labeled instances. However, the quality of pseudo-labels
substantially degrades on out-of-domain data [9, 25] due to the existing distribution shift and
challenges induced by producing pseudo-labeled bounding boxes [9, 25]. Unlike existing
DA and DG methods, which learn domain-invariant features using objectives in the visual
space, we propose to use text/descriptions.

Vision-Language Models. Various works have studied the benefit of learning image-
text joint representations in various computer vision tasks [11, 15, 21, 24, 29, 36]. VirTex
[10] pre-trained a visual encoder using image-caption pairs, which are then transferred for
different downstream tasks. CLIP [36] and ALIGN [21] learn robust and rich visual features
by performing cross-modal contrastive loss on large amounts of image-text pairs for open-
vocabulary image classification. Recently, several studies used image-text pairs for open-
vocabulary object detection. [1, 54] learned joint embedding by matching region features to
word/text embeddings. ViLD [14] learned visual features by distilling from pre-trained CLIP
encoders. RegionCLIP [57] and GLIP [23] use region-text matching and phrase-grounding,
respectively, to pre-train the visual encoder for OVD. In contrast to these works, we study
the effectiveness of language for generalizing over domain shift.

3 Approach
Let X and Y represent input space and label space, respectively. A domain can be formally
described as a joint distribution PXY sampled from X ×Y , where X ×Y denotes the set of all
probability distributions. Unlike conventional DG settings, in SSDG, we only have access
to one fully labeled and one or more unlabeled source domains, defined as S = {Sk}K

k=1,
where S1 = SL = (xLi ,y

L
i )

NL
i=1 is a labeled source of size NL, {Sk}K

k=2 = {SUk}K
k=2 is the k-th

unlabeled source of size NUk , K is the number of source domains, and yL
i = (bL

i ,c
L
i ) denotes

the corresponding labels with bounding-box coordinates b and their associated categories c.
Each source domain Sk is associated with a joint distribution Pk

XY and Pk
XY ̸= Pk′

XY for k ̸= k′.
In this work, we assume that the y j ∈ Y share the same set of classes across all domains.
The ultimate goal is to utilize the information from the source domains to develop an object
detection model capable of generalizing effectively to an unseen target domain T = {xT

j }
NT
j=1

with NT examples, which is drawn from an unknown distribution PT
XY .

3.1 Cross-Domain Descriptive Multi-Scale Learning
The primary motivation is to leverage the semantically rich information in image descriptions
generated by image-captioning models to learn a robust object detector model. We enforce
the backbone to learn domain-invariant features, enabling a caption generator to produce
consistent descriptions for images with similar semantics but different domain-specific char-
acteristics. This ensures that the model preserves the essential information across different
styles and enhances the model’s generalization capabilities across various domains. To this
end, we propose a novel contrastive-based consistency to maximize the agreement between
descriptions of an image across domains in the embedding space.
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As illustrated in Fig. 2, we use a vision-to-language (v2l) module to obtain descriptive
features by projecting image features to the language space. We propose to employ the
mapping network of a pre-trained image-captioning model, which stays frozen throughout
training. Specifically, we pre-train the ClipCap model [30] with the object detector backbone
B as its vision encoder and extract its mapping network. We apply v2l to the image represen-
tation to obtain the desired descriptive features in the language space: zℓ = v2l(B(x)). We
define the proposed consistency learning approach in the following text.

Instance-level Descriptive Consistency Learning. Consider a large labeled dataset SL
and a set of smaller unlabeled domains SUk (i.e., NL >> NU ). We use the smaller domains to
create a larger auxiliary domain SŨ of size NŨ = (K−1) ·NL+∑

K
k=2 NUk by synthesizing SL

to K-1 unlabeled source domains. Particularly, we use CycleGAN [61] to stylize the images
between the labeled and unlabeled source domains. For simplicity, in the rest of the paper,
we assume that images are translated from a labeled domain to an unlabeled (i.e., NŨ = NL
and K = 2), but the unlabeled domain(s) can also be transferred to labeled in order to enforce
consistency. Let us define {(xi, x̃i)|xi ∈ SL, x̃i ∈ SŨ} where xi and x̃i represent the same scene
but belong to SL and SŨ , respectively. RPN [37] generates region proposal ri, j for image
xi, which is then used to extract region features vi, j and ṽi, j by applying RoIAlign [17] on
zv

i = B(xi) and z̃v
i = B(x̃i), respectively. Finally, descriptive region features can be computed

by applying the v2l on each region feature, denoted as zℓi, j = v2l(vi, j) and z̃ℓi, j = v2l(ṽi, j).
For brevity, let us define all region descriptive feature pairs of all images in the batch as
Zℓ = {(zℓi , z̃ℓj)}, where i ∈ {1, . . . ,N}, j ∈ {1, . . . ,N}, (zℓi , z̃

ℓ
i ) is a positive pair, (zℓi , z̃

ℓ
j)i̸= j is a

negative pair, and N is the total number of the proposals or region descriptive features in the
batch. The instance-level contrastive loss can be defined:

Linst−cont =
1
N ∑

i
− log

(
exp(si,i/τ)

exp(si,i/τ)+∑k exp(si,k/τ)

)
; k ̸= i, hi = g(zℓi ) (1)

si, j = s(hi, h̃ j) =
h⊤i · h̃ j

||hi|| · ||h̃ j||
(2)

where g(·) is a projection network to project region descriptive features to a lower dimension,
si, j = is a cosine similarity score, si,i = s(hi, h̃i) is a positive pair, si,k = s(hi, h̃k) is a negative
pair, and τ is temperature parameter. One key aspect of our method is the choice of apply-
ing the contrastive loss in the embedding space (i.e., the output of the v2l layer) rather than
directly in the language space (i.e., on the tokens). This choice has several advantages. The
embedding space provides a continuous and compact representation of semantic content, en-
abling meaningful similarity metrics between images. By focusing on learning semantically
consistent features in the embedding space, the model is less sensitive to specific phrasing or
word choice. Additionally, optimizing in the embedding space leads to a more efficient op-
timization process without needing to backpropagate gradients through the entire language
generation process, which is non-differentiable.

Image-level Descriptive Consistency Learning. The proposed instance-level contrastive
loss can naturally extend to an image-level contrastive loss Limg−cont by simply replacing the
region features with image features in Eq. 1. We thus encourage the generation of semanti-
cally consistent descriptive features in different domains by minimizing the contrastive loss
at both image-level and instance-level. This removes the domain bias in the backbone B and
results in a model capable of learning domain-invariant visual features at multiple scales,
leading to better generalization performance on unseen target domains.
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Figure 2: Overview of CDDMSL. The backbone processes the image and its stylized ver-
sion to produce image features. Region proposals are created for the labeled domain, and
RoiAlign extracts region features from the original and stylized versions. The v2l module
produces region descriptive features, projected to a lower dimension by g(·). The backbone
and projection heads are trained to maximize agreement between descriptive features across
domains using a contrastive loss Limg−inst . Image-level training Limg−cont follows a similar
process, with RoiAlign directly passing input features to v2l. Finally, a knowledge distil-
lation regularization loss Ldist is applied to the descriptive features of the labeled domain
based on the backbone and RegionClip encoder output.

3.2 Regularization via Knowledge Distillation
Merely applying the contrastive loss may lead to converging to a trivial solution, generating
consistent but meaningless descriptions. We propose a knowledge distillation-based (KD)
regularization by exploiting that the image-captioning model produces meaningful descrip-
tions, utilizing pre-trained RegionCLIP as its image-encoder. Concretely, for a given image
xi ∈ SL, the regularization loss is defined as:

Ldist =
1

NL

NL

∑
i=1

d(v2l(zi),v2l(zR
i )); zR

i = FR−CLIP(xi) (3)

zi and zR
i represent the model’s backbone (yellow encoder in Fig. 2) and the RegionCLIP

(FR−CLIP) output, respectively. d(·, ·) is a distance function. In this work, the Manhattan
distance metric is used. It is crucial to note that the RegionCLIP features remain frozen
throughout the training.

3.3 Object Detector Training

We use the labeled source domain SL = (xLi ,y
L
i )

NL
i=1 to train a Faster-RCNN [37]. Unlike

Faster-RCNN, we adopt a text-based classifier in the detection head. Following Region-
CLIP, we create prompts for each object category by filling it into prompt templates (e.g.,
"A photo of a car," "A painting of a bus," etc.) and encode the prompts using the pre-
trained CLIP language encoder. Finally, cross-entropy with focal scaling [35] is employed
as the classification loss Lcls. We use fixed all-zero embedding for the background cate-
gory and apply a predefined weight to background regions following [54, 57]. The detec-
tor is then trained with a Ldet loss which combines Lcls with standard RPN and regres-
sion loss as in [37]: Ldet = Lcls +Lreg +LRPN . Lastly, training consists of two major
stages. During the burn-up stage, the object detector is warmed-up in a supervised man-
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ner, whereas in joint training, it is jointly learned by supervised and contrastive objectives:
Ltot = Ldet +Linst−contr +Limg−contr +ω ·Ldist , where ω is a regularization parameter.

4 Experiments

Real-to-artistic generalization. We conduct our experiments based on 4 datasets: Pascal-
VOC (VOC) [12, 13], Clipart1k [20], Watercolor2k [20], Comic2k [20] to assess generaliz-
ability on artistic and style domain shifts. VOC contains 20 categories of common objects
from 16,551 natural images, Clipart consists of 20 categories of 3,165 objects from 1000
instances, and Watercolor and Comic contain 6 categories of 3,315 and 6,389 objects from
2,000 images, respectively. Experiments are conducted in three settings: (1) VOC and Cli-
part, (2) VOC and Watercolor, and (3) VOC and Comic are used as the source domains, in
which only VOC is considered a labeled domain. In each setting, the remaining datasets
are considered unseen targets to assess the model’s generalizability across multiple domains
(Table 1). We extend our model to DA and show the results in Table 4a.

Adverse weather adaptation. We experiment on Cityscapes [6] (City), Foggy-Cityscapes
[6] (Foggy), and BDD100k [53] (Bdd) to evaluate generalizability across different time and
weather conditions. City features 3,025 urban images from 50 cities, Foggy simulates fog
on the City, and Bdd comprises 10,000 images of various weather conditions and times. All
datasets contain 8 categories, but we ignore the “train” category on Bdd due to its low in-
stance count in the validation set [26]. As Foggy is a simulated based on City, we use them as
the source domains without the need for style transfer (City labeled and Foggy unlabeled),
while Bdd is an unseen domain in the domain generalization task summarized in Table 2.
Note we do not use the labels on the Foggy data throughout training. Following DIDN [26],
since most previous works are on weather adaptation, we perform adaptation from City to
Foggy and extensively compare against baselines and related works as shown in Table 3.

Baselines. Faster-RCNN [37] (F-RCNN) with ImageNet [8] and RegionCLIP (R-CLIP)
are labeled source-only baselines, trained on VOC for real-to-artistic generalization/adaptation
(Table 1 / Table 4a) and City for adverse weather generalization/adaptation (Table 2 / Ta-
ble 3). For a fair comparison, we only compare against models using ResNet50 backbone
as RegionCLIP [57] does not have ResNet101 pre-trained weights available. For real-to-
artistic generalization, we further train Adaptive-MT [25], a state-of-the-art (sota) DA with
ResNet50 backbone. We define Direct Visual Alignment (DVA) and Caption Pseudo Label-
ing (Caption-PL) as additional baselines in the ablation (Table 1 and Table 4a for DG and DA
in real-to-artistic, respectively). DVA applies the descriptive consistency loss in the visual
space without using v2l. Caption-PL uses pseudo labels obtained by applying ClipCap on
the original image to compute image-captioning loss over tokens for the stylized image. IRG
[45] is only reported for the (VOC and Clipart) setting as performance/pre-trained weights
were reported only in this setting.

Implementation details. PyTorch [34] and Detectron2 [50] are used for development.
We adopt RegionCLIP’s ResNet50 [16] as the object detector backbone. Following Clip-
CAP1, v2l comprises 8 multi-head self-attention layers, each with 8 heads. ClipCAP is
pre-trained on COCO-captions [4, 27] using frozen RegionCLIP as the image encoder and
GPT-2 as the language decoder, with only the mapper (v2l) being updated. Projection layer g
(after v2l in Fig. 2) has output dimension of 256. For all experiments, we use SGD with 0.002

1https://github.com/rmokady/CLIP_prefix_caption
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Table 1: Real-to-artistic generalizations. Numbers in parentheses show the difference from
R-CLIP. Max ↑ shows maximum improvement over two target domains compared to F-
RCNN. We report mAP (%). †/‡ denote DA methods/labeled source-only methods.
Method VOC&Clip →Water,Com VOC&Water→Clip,Com VOC&Com→Clip,Water Max ↑

Watercolor Comic Clipart Comic Clipart Watercolor
F-RCNN‡ [37] 41.2 17.9 24.1 17.9 24.1 41.2 -
R-CLIP‡ [57] 44.7 34.2 33.9 34.2 33.9 44.7 16.3/16.3/9.8
Adaptive MT† [25] 40.6 (-4.1) 22.2 (-12.0) 29.0 (-4.9) 24.3 (-9.9) 25.7 (-8.2) 42.3 (-2.4) 4.3/6.4/1.6
IRG† [45] 48.1 (+3.4) 25.9 (-8.3) - - - - 8.0/-/-
DVA 45.6 (+0.9) 38.1 (+3.9) 32.6 (-1.3) 34.2 (+0.0) 35.9 (+2.0) 45.9 (+1.2) 20.2/16.3/11.8
Caption-PL 45.0 (+0.3) 36.4 (+2.2) 30.1 (-3.8) 30.3 (-3.9) 34.7 (+0.8) 42.1 (-2.6) 18.5/12.4/10.6
Ours 49.8 (+5.1) 45.9 (+11.7) 38.7 (+4.8) 43.5 (+9.3) 39.8 (+5.9) 49.4 (+4.7) 28.0/25.6/15.7

Table 2: Adverse weather generalization. City, Foggy → Bdd in %
Method prsn rider car truck bus motor bike mAP
F-RCNN [37] 27.9 27.5 43.1 16.6 15.1 5.6 21.0 19.6
R-CLIP [57] 40.6 (+12.7) 31.3 (+3.8) 47.9 (+4.8) 16.8 (+0.2) 12.0 (-3.1) 11.2 (+5.6) 23.2 (+2.2) 26.1 (+6.5)

DIDN [26] (ICCV’21) 34.5 (+6.6) 30.4 (+2.9) 44.2 (+1.1) 21.2 (+4.6) 19.0 (+3.9) 9.2 (+3.6) 22.8 (+1.8) 22.7 (+3.1)

Ours 41.4 (+13.5) 31.7 (+4.2) 49.8 (+6.7) 18.1 (+1.5) 11.4 (-3.7) 12.4 (+6.8) 25.6 (+4.6) 27.1 (+7.5)

initial lr, a linear scheduler, and a batch size of 8, except 12 for the RegionCLIP baseline.
Experiments use 4 NVIDIA Quadro RTX 5000 with 10k burn-up and 20k joint-training iter-
ations. The burn-up stage follows RegionCLIP [57], and SSDG experiments continue from
this checkpoint. ω in Ltot is 1. We evaluate mAP with a 0.5 threshold. For realistic evalu-
ation, following [31, 32], we avoided intensive hyperparameter search and manually chose
reasonable parameters that resulted in stable training. However, a comprehensive search is
expected to improve the performance.

4.1 Results
Domain generalization. Table 1 showcases the generalizability of our proposed method
on real-to-artistic tasks. The table is divided into three sections according to the unlabeled
domain (i.e., Clipart, Watercolor, and Comic). Our proposed method consistently enhances
R-CLIP generalizability and achieves the best result compared to the DA baselines by a large
margin. For example, it achieves an 11.7% and 9.3% improvement on Comic when Clipart
and Watercolor is the unlabeled source domain, respectively. We also observe that baselines
perform better on Watercolor, which is intuitive as Watercolor is the closest domain to VOC.
Likewise, our proposed approach outperforms DIDN on City, Foggy → Bdd by 4.4% (Ta-
ble 2). These results demonstrate the effectiveness of language-guided feature alignment and
the proposed consistency learning method for developing a generalizable object detector.

Extension to domain adaptation. Our method can naturally extend to domain adapta-
tion as it requires only one labeled source domain. The labeled and unlabeled source domains
in the domain generalization task serve as source and target domains, respectively. Table 3
presents the result of City → Foggy adaptation against baselines and sota DA methods, while
real-to-artistic adaptation can be found in the Table 4a. As illustrated in Table 3, our method
improves F-RCNN and R-CLIP by 20.8% and 7.5%. It not only substantially outperforms
DIDN (sota DGOD on this setting) by 8.6% but also achieves comparable results to the ex-
isting DA works. While CDDMSL is slightly under-performed compared to TTD by only
0.1%, contrary to DA methods, it is not designed to adapt to a particular domain.

2Source-free domain adaptation
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Table 3: Adverse weather adaptation. City→Foggy in mAP (%), † from [18].
Method prsn rider car truck bus train motor bike mAP

- F-RCNN† [37] 36.9 36.1 44.5.6 21.7 32.3 9.2 21.5 32.4 28.3 (-20.8)

R-CLIP [57] 46.5 51.8 57.6 27.3 45.1 19.7 34.8 50.2 41.6 (-7.5)

DA

SW-DA [41] (CVPR’19) 31.8 44.3 48.9 21.0 43.8 28.0 28.9 35.8 35.3
D&Match† [22] (CVPR’19) 31.8 40.5 51.0 20.9 41.8 34.3 26.6 32.4 34.9
SC-DA† [62] (CVPR’19) 33.8 42.1 52.1 26.8 42.5 26.5 29.2 34.4 35.9
MTOR [2] (CVPR’19) 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1
AFAN† [46] (TIP’21) 42.5 44.6 57.0 26.4 48.0 28.3 33.2 37.1 39.6
GPA† [51] (CVPR’20) 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5
ViSGA† [38] (ICCV’21) 38.8 45.9 57.2 29.9 50.2 51.9 31.9 40.9 43.3
SFA† [47] (acmmm’21) 46.5 48.6 62.6 25.1 46.2 29.4 28.3 44.0 41.3
DSS†[48] (CVPR’21) 50.9 57.6 61.1 35.4 50.9 36.6 38.4 51.1 47.8
TTD+FPN† [18] (CVPR’22) 50.7 53.7 68.2 35.1 53.0 45.1 38.9 49.1 49.2
IRG2 [45] (CVPR’23) 37.4 45.2 51.9 24.4 39.6 25.2 31.5 41.6 37.1

DG DIDN [26] (ICCV’21) 38.3 44.4 51.8 28.7 53.3 34.7 32.4 40.4 40.5 (-8.6)

Ours 50.5 55.1 66.9 35.0 56.2 33.5 41.0 54.3 49.1

Table 4: (a) Real-to-artistic adaptation. VOC is labeled source domain. (b) Ablation
study. VOC, Clipart → Watercolor, Comic (DG), Clipart (DA). Results in mAP (%).

Method Target Domain
Clipart Watercolor Comic

F-RCNN [37] 24.1 41.2 17.9
R-CLIP [57] 33.3 44.7 34.2
Adaptive MT [25] 30.5 43.7 23.4
IRG [45] 31.5 53.0 -
DVA 36.6 43.9 35.9
Caption-PL 35.2 44.2 34.2
Ours 40.4 49.7 46.3

(a) Domain adaptation on real-to-artistic

DA DG
R-CLIP init. Limg−cont Linst−cont Ldist Clipart Watercolor Comic

24.1 41.2 17.9
✓ 32.3 44.7 34.2
✓ ✓ 32.3 41.7 35.1
✓ ✓ 34.6 45.0 35.4
✓ ✓ ✓ 35.1 44.2 35.7
✓ ✓ ✓ ✓ 40.4 49.8 45.9

(b) Effectiveness of each component

4.2 Ablation & Discussion

We conduct an extensive ablation study by examining five aspects of CDDMSL: (i) Impact of
vision-language pre-training (Sec. 3.3), (ii) Effectiveness of language space alignment com-
pared to visual-space alignment (Sec. 3.1), (iii) Benefit of feature-space objective compared
to token-space objective, (iv) Effectiveness of multi-scale learning (Sec 3.1), (v) Contribu-
tion of KD regularization (Sec. 3.2). Table 4b exhibits the effectiveness of each component.

(i) Vision-language pre-training. According to Table 1, R-CLIP solely notably im-
proves the generalizability of F-RCNN (pre-trained on Imagenet) by 9.8%, 3.5%, and 16.3%
on Clipart, Watercolor, and Comic, respectively. Additionally, we observe 6.5% gain on
City,Foggy → Bdd (Table 2), supporting the benefit of vision-language pre-training. Despite
the improvement, vision-language pre-training does not guarantee optimal generalizability
as it lacks explicit optimization for adaptation to a new domain, and the model may still
overfit to domain-specific features during fine-tuning. Hence, we further improve R-CLIP
initialization by incorporating descriptive consistency learning as described in Sec. 3.1.

(ii) Language space vs. visual space alignment. To better understand the effectiveness
of enforcing domain-invariant learning through language space, we compare our model with
the Direct Visual Alignment baseline (row 5 in Table 1 and Table 4a) under an identical
setting. In all settings, our (last row) substantially exceeds DVA in DA and DG tasks.

(iii) Feature-space vs. token-space. Comparing Caption-PL (row 4) with our approach
in Table 1 and Table 4a indicates the superiority of enforcing consistency in the feature space.
Ours significantly improves Caption-PL in all settings and tasks. Token-space approaches
may degrade the performance by focusing on unnecessary non-informative tokens.

(iv) Effectiveness of Multi-Scale Learning. Table 4b shows instance-level is slightly
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Table 5: Visualization. City, Foggy→ Bdd & VOC, Clipart→ Comic, Watercolor.

Night

Rainy

Comic

Watercolor

R-CLIP Ours

more effective than image-level, but combined delivers the best result. This underscores the
importance of mitigating bias and distribution shifts at both levels in object detection.

(v) KD regularization’s contribution. Finally, adding a KD regularizer results in the
best performance (compare last two rows in Table 4b), implying that KD regularization helps
the model avoid trivial solutions and produce semantically consistent descriptions.

Visualization. Table 5 shows qualitative detection results from the R-CLIP baseline and
CDDMSL. R-CLIP yields more false negatives, particularly in challenging conditions like
rain and detecting distant small objects. Our multi-scale feature alignment improves object-
background differentiation, leading to superior detection on the target domain. Additionally,
CDDMSL ensures more accurate recognition by retaining semantically crucial information.

5 Conclusion
This paper introduces a novel approach, termed Cross-Domain Descriptive Multi-Scale Learn-
ing (CDDMSL), for semi-supervised domain generalization in object detection. Initially, we
explore the effectiveness of vision-language pre-training in achieving a robust object detec-
tor. Subsequently, we present a unique method that promotes domain-invariant feature learn-
ing on the visual encoder through the language space. This is achieved using a contrastive
learning-based approach at both image and instance levels. CDDMSL delivers state-of-the-
art results in DA and DG tasks across various object detection benchmarks.
Acknowledgement: The work is in part supported by NSF Grant No. 2006885.
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