University of Pittsburgh Semi-Supervised Domain Generalization for Object Detection via Language-Guided Feature Alignment

Motivation

- Existing domain adaptation (DA) and generalization (DG) methods in object detection enforce feature alignment in the visual space.
- But they face challenges, such as object appearance variability and scene complexity, making distinguishing objects difficult and preventing accurate detection.
- Image descriptions offer rich semantic data for object localization and detection.
- Enforcing consistency in captions across domains will enable model to learn robust representation for recognizing objects and their relations across domains.
- Key idea: Enforcing generated image description/captions to be consistent across domains to learn domain robust representation

Quantitative Results

- sky. A large red and yellow highway with a **R-CLIP**
 - yellow and yellow **flag**.
- A plane flying over water. Ours

Overview

We build a model for Semi-Supervised Domain Generalization in Object Detection.

A red and white airplane flying in the

A red and white **airplane** flying in the sky.

R-CLIP

- Capitalizing on the **generalizability** of **vision-language pre-training**, we utilize the RegionCLIP (Zhong et al. 2022) backbone.
- We employ a novel multi-scale contrastive-based consistency objective over generated descriptive features of an image and its stylized version.
- Our approach significantly outperforms baselines in both DA and DG tasks over two benchmarks.

Related Works

- Our method only requires one labeled domain. In contrast, prior DG work (Lin et al. 2021) rely on multiple fully-annotated source domains.
- Prior DA and DG methods in object detection employ different techniques such as pseudolabeling, data augmentation, mean-teacher framework, etc. by enforcing their objective in the visual domain.

Real-to-Artistic Generalization

Ours

Method	$VOC\&Clip \rightarrow Water, Com$		$VOC\&Water \rightarrow Clip, Com$		${\rm VOC}\&{\rm Com}{\rightarrow}{\rm Clip}, {\rm Water}$		Max ↑	
	Watercolor	Comic	Clipart	Comic	Clipart	Watercolor		
Faster-RCNN	41.2	17.9	24.1	17.9	24.1	41.2	-	
RegionCLIP	44.7	34.2	33.9	34.2	33.9	44.7	16.3/16.3/9.8	
Adaptive MT (CVPR'22)	40.6 (-4.1)	22.2 (-12.0)	29.0 (-4.9)	24.3 (-9.9)	25.7 (-8.2)	42.3 (-2.4)	4.3/6.4/1.6	
$IRG_{(\rm CVPR'23)}$	48.1 (+3.4)	25.9 (-8.3)	-	-	-	-	8.0/-/-	
DVA	45.6 (+0.9)	$38.1_{(+3.9)}$	32.6 (-1.3)	34.2 (+0.0)	$35.9_{(+2.0)}$	45.9 (+1.2)	20.2/16.3/11.8	
Caption-PL	45.0 (+0.3)	36.4 (+2.2)	30.1 (-3.8)	30.3 (-3.9)	34.7 (+0.8)	42.1 (-2.6)	18.5/12.4/10.6	
Ours	$49.8_{(+5.1)}$	$45.9_{(+11.7)}$	$38.7_{(+4.8)}$	$43.5_{(+9.3)}$	$39.8_{(+5.9)}$	$49.4_{(+4.7)}$	28.0/25.6/15.7	

- Our outperforms baselines on all settings and improves the baseline by up-to 11.7%.
- Our method outperforms DVA and Caption-PL, which shows the effectiveness of enforcing the consistency objective in through the language space and the latent space, respectively.

Real-to-Artistic Adaptation Our proposed approach outperforms stateof-the-arts DA methods.

It also significantly improves the baselines (source-only, DA, and DG).

Adverse Weather Generalization

	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$					
	Mathad	Γ	Carget Dom	Domain		
	Method	Clipart	Watercol	or Comic		
-	Faster-RCNN	24.1	41.2	17.9		
	$RegionCLIP_{(CVPR'22)}$	33.3	44.7	34.2		
	Adaptive MT $(CVPR'22)$	30.5	43.7	23.4		
	$IRG ({\rm CVPR'23})$	31.5	53.0	-		
	DVA	36.6	43.9	35.9		
	Caption-PL	35.2	44.2	34.2		
	Ours	40.4	49.7	46.3		
	truck bus r	notor	bike	mAP		

Method	prsn	rider	car	truck	bus	motor	bike	mAP
Faster-RCNN	27.9	27.5	43.1	16.6	15.1	5.6	21.0	19.6
$RegionCLIP_{\rm (CVPR'22)}$	40.6 (+12.7)	31.3 (+3.8)	47.9 (+4.8)	16.8 (+0.2)	12.0 (-3.1)	11.2 (+5.6)	23.2 (+2.2)	26.1 (+6.5)
DIDN (ICCV'21)	$34.5_{(+6.6)}$	30.4 (+2.9)	44.2 (+1.1)	$21.2_{(+4.6)}$	19.0 (+3.9)	9.2 (+3.6)	22.8 (+1.8)	22.7 (+3.1)
Ours	$41.4_{(+13.5)}$	$31.7_{(+4.2)}$	$49.8_{(+6.7)}$	18.1 (+1.5)	11.4 (-3.7)	$12.4_{(+6.8)}$	25.6 (+4.6)	$27.1_{(+7.5)}$

We also show the effectiveness of our method on Cityscapes, Foggy-Cityscapes -> Bdd100k and improve DIDN by 7.5%.

Adverse Weather Adaptation

Pre-training vision-to-language module (*v***2***l***)**

• A transformer-based v2l layer is pre-trained according to ClipCap (Mokady et al. 2021) to project visual features to language space.

Instance-level & Image-level Descriptive Consistency Learning

• Image-level loss is computed by replacing instance features with image-level images

$$\mathcal{L}_{inst-cont} = \frac{1}{N} \sum_{i} -\log\left(\frac{\exp(\mathbf{s}_{i,i}/\tau)}{\exp(\mathbf{s}_{i,i}/\tau) + \sum_{k} \exp(\mathbf{s}_{i,k}/\tau)}\right); \ k \neq i, \ h_i = g(z_i^{\ell}) \qquad \mathbf{s}_{i,j} = \mathbf{s}(h_i, \tilde{h}_j) = \frac{h_i^{\top} \cdot \tilde{h}_j}{||h_i|| \cdot ||\tilde{h}_j||}$$

Regularization via Knowledge Distillation (KD)

• A KD regularization is employed to ensure maintaining meaningful representation.

$$\mathcal{L}_{dist} = \frac{1}{N_{\mathcal{L}}} \sum_{i=1}^{N_{\mathcal{L}}} \mathbf{d}(v \mathcal{2}l(z_i), v \mathcal{2}l(z_i^R)); \quad z_i^R = F_{R-CLIP}(x_i)$$

Object Detector Training

$$\mathcal{L}_{tot} = \mathcal{L}_{det} + \mathcal{L}_{inst-contr} + \mathcal{L}_{img-contr} + \omega \cdot \mathcal{L}_{dist}$$

Experimental Setup

Real-to-Artistic

Domain Generalization

- Source
 - Labeled: Pascal-VOC (Everingham et al. 2012,2007)

Adverse-Weather

Domain Generalization

• Source

2016)

Domain Adaptation

• Cityscapes

• Foggy-Cityscapes

• Target(s)

• Source

• Target(s)

- Labeled: Cityscapes (Cordts et al. 2016)
 - **Unlabeled**: Foggy-Cityscapes (Cordts et al.

	Method	prsn	rider	car	truck	bus	train	motor	bike	mAP
	Faster-RCNN	36.9	36.1	44.5.6	21.7	32.3	9.2	21.5	32.4	28.3 (-20.8)
-	RegionCLIP (CVPR'22)	46.5	51.8	57.6	27.3	45.1	19.7	34.8	50.2	41.6 (-7.5)
	SW-DA (CVPR'19)	31.8	44.3	48.9	21.0	43.8	28.0	28.9	35.8	35.3
	D&Match (CVPR'19)	31.8	40.5	51.0	20.9	41.8	34.3	26.6	32.4	34.9
	SC-DA (CVPR'19)	33.8	42.1	52.1	26.8	42.5	26.5	29.2	34.4	35.9
	MTOR (CVPR'19)	30.6	41.4	44.0	21.9	38.6	40.6	28.3	35.6	35.1
DA	AFAN (TIP'21)	42.5	44.6	57.0	26.4	48.0	28.3	33.2	37.1	39.6
	GPA (CVPR'20)	32.9	46.7	54.1	24.7	45.7	41.1	32.4	38.7	39.5
	ViSGA (ICCV'21)	38.8	45.9	57.2	29.9	50.2	51.9	31.9	40.9	43.3
	SFA (acmmm'21)	46.5	48.6	62.6	25.1	46.2	29.4	28.3	44.0	41.3
	DSS (CVPR'21)	50.9	57.6	61.1	35.4	50.9	36.6	38.4	51.1	47.8
	TTD+FPN (CVPR'22)	50.7	53.7	68.2	35.1	53.0	45.1	38.9	49.1	49.2
	IRG (CVPR'23)	37.4	45.2	51.9	24.4	39.6	25.2	31.5	41.6	37.1
DC	DIDN (ICCV'21)	38.3	44.4	51.8	28.7	53.3	34.7	32.4	40.4	40.5 (-8.6)
DG	Ours	50.5	55.1	66.9	35.0	56.2	33.5	41.0	54.3	49.1

- We extensively compare against DA methods on Cityscapes -> Foggy-Cityscapes.
- We observe that while our method is not designed to adapt to a specific domain it still outperform most of the DA methods by a large margin.

Ablation & Visualization

Visualization

Stability Comparison

- **Unlabeled**: Clipart1k, Watercolor2k, or Comic2k (Inoue et al. 2018)
- Target(s) ۲
 - Clipart1k, Watercolro2k, or Comic2k

Domain Adaptation

- Source
- Pascal-VOC
- Target(s)
 - Clipart1k, Watercolor2k, and Comic2k

Baselines

Direct Visual Alignment (DVA)

• Applying Contrastive loss in the visual space

Caption-PL

• Bdd100k (Yu et al. 2020)

Caption Pseudo Labeling

Conclusion

- We developed an approach for Semi-Supervised Domain Generalization in Object Detection.
- We stylized labeled source domain in the unlabeled domain using a style transfer model.
- We leveraged vision-language pretraining by utilizing RegionCLIP.
- We developed a multi-scale contrastive-based approach to ensure consistency of descriptive features in the language latent space.

Target Dataset $\Delta = DA_{mAP}(target) - DG_{mAP}(target)$

Effectiveness of each component

			DA	DG	r	
R-CLII	P init. \mathcal{L}_{img-}	$_{cont} \mathcal{L}_{inst}$ -	$-cont \ \mathcal{L}_{dist}$	Clipart	Watercolo	r Comic
				24.1	41.2	17.9
\checkmark				32.3	44.7	34.2
\checkmark	\checkmark			32.3	41.7	35.1
\checkmark		\checkmark		34.6	45.0	35.4
\checkmark	\checkmark	\checkmark		35.1	44.2	35.7
\checkmark	\checkmark	\checkmark	\checkmark	40.4	49.8	45.9

- Vision-Language pre-training is more robust compared to ImageNet pre-training.
- Instance-level and Image-level consistency together achieve the best performance.
- KD regularization ensures semantically meaningful features, resulting in best performance.

Contact & Acknowledgement

- For more information, please contact: <u>sem238@pitt.edu</u>, or friend me via LinkedIn.
- https://sinamalakouti.github.io/
- We are grateful for NSF Grant No. 2006885.

