

Overview

- The internal representations of an unconditional denoiser network can be used to adapt to new conditions with limited examples.
- We verify the **effectiveness** of our approach on **conditional** generation tasks such as semantic mask-conditioned generation.
- Our approach allows us to **cheaply augment** with **synthetic** images to improve classification accuracy.

Approach

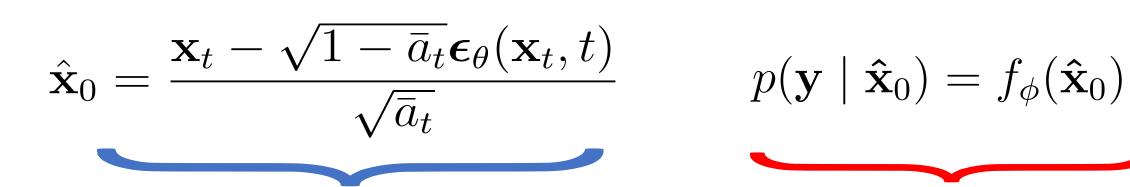
A trained denoiser network can be interpreted as a learned score function

$$\nabla_{\mathbf{x}_t} \log p_{\theta}(\mathbf{x}_t) = -\frac{1}{\sqrt{1 - \bar{a}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t)$$

For some conditioning **y** we can express the score of the posterior as

$$\nabla_{\mathbf{x}_{t}} \log p_{\theta}(\mathbf{x}_{t} \mid \mathbf{y}) = \nabla_{\mathbf{x}_{t}} \log p_{\theta}(\mathbf{x}_{t}) + \lambda \nabla_{\mathbf{x}_{t}} \log p(\mathbf{y} \mid \mathbf{x}_{t})$$
$$= -\frac{1}{\sqrt{1 - \bar{a}_{t}}} \epsilon_{\theta}(\mathbf{x}_{t}, t) + \lambda \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t}, t)$$

We propose using intermediate denoiser representations to learn to map the estimate of the final image to the conditioning



final image estimate

"few-shot" learned likelihood

and we can modify sampling as

 $\hat{\boldsymbol{\epsilon}}_{\theta}(\mathbf{x}_t, t) = \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) - \lambda \sqrt{1 - \bar{a}_t} \nabla_{\mathbf{x}_t} \log p(\mathbf{y} \mid \hat{\mathbf{x}}_0(\mathbf{x}_t))$

Using the **unconditional denoiser** as a **feature** extractor:

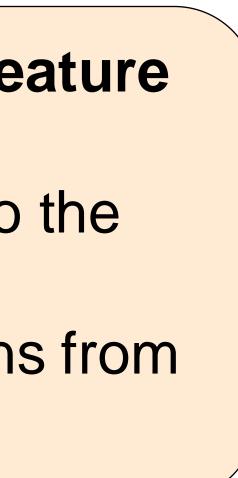
- Can provide guidance that is robust to the initial inaccurate estimates of x₀
- Allow learning the guidance directions from a small set of labeled samples.

Acknowledgements: This work is supported by NSF grants IIS-2123920 and IIS-2212046, Stony Brook Profund 2022 seed funding and a gift from Adobe Research.

Conditional Generation from Unconditional Diffusion Models using Denoiser Representations

Alexandros Graikos, Srikar Yellapragada, Dimitris Samaras

- $(\mathbf{y} \mid \mathbf{x}_t)$



- Few-shot guidance for image-level attributes
- We perform image-level conditioning with an unconditional CelebA-64 diffusion model and training an attribute classifier with **50 positive** and **50 negative** examples, e.g. *blonde*, *male*.
- DiffAE [1] and D2C [2]: Comparable FID without learning how to **compress** the entire image into a latent representation during training.

Class	Ours	DiffAE	D2C	DDIM-I	NVAE
Male	15.34	11.52	13.44	29.03	41.07
Female	9.94	7.29	9.51	15.17	16.57
Blond	13.07	16.10	17.61	29.09	31.24
Non-Blond	10.97	8.48	8.94	19.76	16.73

Synthetic Data Augmentation

- We fine-tune an unconditional ImageNet model as class conditional on the Tiny-ImageNet dataset.
- We extract features from the unconditional U-Net and train a rejection classifier.
- To sample, discard any class-conditioned image for which the classifier predicts a probability lower than a threshold of 0.2.

- We augment Tiny-ImageNet with increasing amounts of diffusiongenerated synthetic data.
- Training with our synthetic data **improves accuracy** of ResNet baselines by **9%** on Tiny-ImageNet.
- Augmentation approach complements image-level augmentations such as Mixup and Cutmix.

	Mixup+		$\operatorname{Real}+$	$\operatorname{Real}+$	$\operatorname{Real}+$
Architecture	Cutmix	Real only	1x Generated	$2 \mathrm{x} \ \mathrm{Generated}$	3x Generated
Resnet-18	No	52.24	56.13	58.13	59.37
	Yes	52.9	58.9	62.01	62.75
Wide-ResNet-50	No	53.27	58.57	61.71	62.82
	Yes	56.56	62.71	66.42	66.82
ResNeXt-50	No	53.98	59.33	62.27	63.15
	Yes	57.98	64.4	66.85	67.05

Few-shot guidance for semantic segmentations

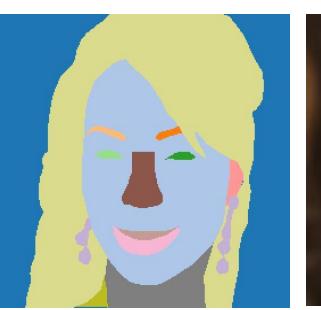
- segmentation pairs
- generate conditionally with just **20 examples**

Mask

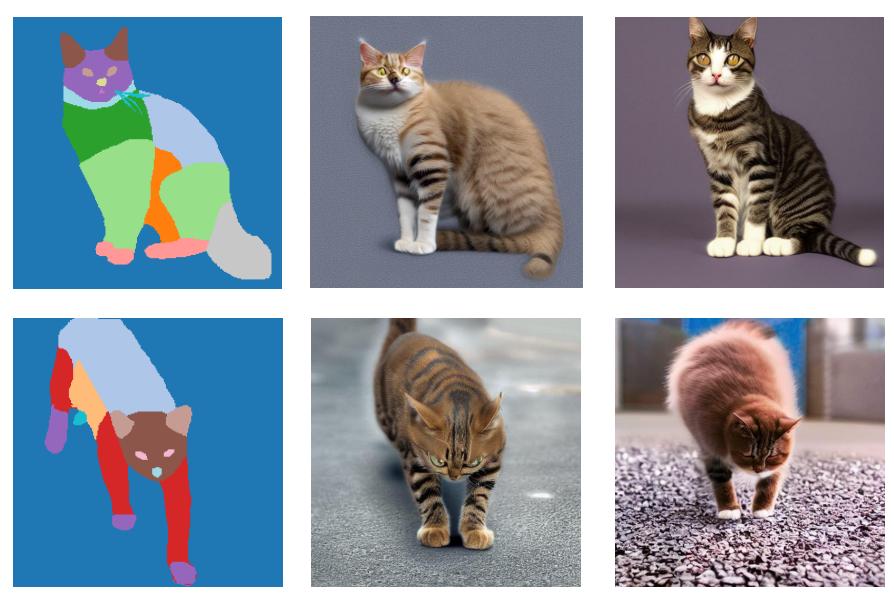
GT

- regimes.

GT



Mask



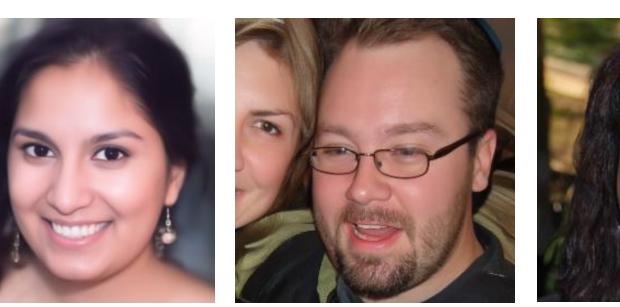
• We can generate conditional samples from a small set of image-

• We use a pre-trained diffusion model on FFHQ-256 and adapt it to

DiffAE [1]: The latent representation over-compresses the image and fails to accurately reproject the per-pixel segmentation DDIM-I: Providing guidance with a network trained only on "clean" images does not work. The intermediate denoiser representations are more robust to the inaccurate estimates of the final image.

DiffAE

Ours



• We compare with ControlNet [3] which fails to work in low-data

• We exploit the fact that the **information is highly correlated** to the existing unconditional **denoiser representations**. This allows us to learn guidance even in these extremely constrained settings.

ControlNet

Ours

• We showcase our ability to work with large models; we condition a **Stable Diffusion** model on segmentations with **30 examples**.

Stable Diffusion Samples

[1] Konpat Preechakul, et al. Diffusion autoencoders: Toward a meaningful and decodable representation, CVPR, 2022 [2] Abhishek Sinha et Al. D2C: diffusion-decoding models for few-shot conditional generation, NeurIPS 2021 [3] Lvmin Zhang et Al. Adding conditional control to text-to-image diffusion models, ICCV 2023