
Model Training

Examined architectures: VGG16 [7] and Xception [8] were 

modified to the present regression problem using four output 

neurons to predict continuous values for each evaluation metric.

• Data augmentation: Three different types of image 

augmentation were investigated: none, moderate (brightness 

change only) and strong augmentation (includes brightness, 

height and width shifts as well as horizontal flips and 

rotations).

• Transfer learning: Due to a small data set, models pre-

trained on ImageNet were used.

• Normalization & Hyperparameter tuning: Min-max 

normalization for balanced output values and hyperband 

optimization for optimal hyperparameters was performed.

• Training procedure: Early stopping and 10-fold cross-

validation were implemented with mean square error as the 

loss function and Adam as the optimizer.

Results

The results are displayed in Table 1. The Xception model led with 

an average prediction accuracy of 87.2% without data 

augmentation. Moderate augmentation of brightness variation 

improved the prediction of the VGG16 model to an R² of 86.9%.  

While moderate augmentation benefited VGG16, it slightly 

impaired Xception. Despite having fewer parameters, Xception is 

preferred due to its better performance.
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Discussion

Excessive image augmentation during training can reduce 

prediction quality, possibly due to data set discrepancies or 

significant semantic image changes. The scatter plots in Figure 2 

display the models bias towards the data center, often 

underestimating highs and overestimating lows. Despite this data 

distribution, which introduces epistemic uncertainty, the model 

still achieves a coefficient of determination of 87.2% in 

predicting edge quality.

Conclusion

Images of cutting edges can be useful for quality assessment. 

However, curating balanced datasets, especially for roughness 

and burr, is difficult due to the potential risk of damages of the 

cutting unit. Further, outliers in the roughness predictions could 

be due to measurement errors resulting in false ground truth. 

Improved sampling or alternative measurements could improve 

accuracy. Future models could refine cutting procedures and set 

quality benchmarks, with a universal model for the metal 

industry being the ultimate goal. This research lays the 

foundation for a holistic assessment of thermal cutting edge 

quality.

Abstract

In this study, we present a novel holistic approach to assess 

the quality of thermal cut edges using images of the cut 

edges. Applying deep learning techniques, we estimate 

quality criteria such as roughness, edge slope tolerance, 

groove tracking, and burr height. Our results show that a 

comprehensive, accurate, and fast prediction of edge 

quality can be effectively achieved by implementing a 

simple image acquisition system combined with a 

convolutional neural network (CNN).

Introduction

Edge quality in sheet metal production is crucial to product 

performance. Ensuring consistently high quality results is 

challenging given the variation in material properties and the 

complexity of the cutting process, such as focus shift [1]. Efficient 

and fast methods for evaluating the quality of thermal cut edges 

are needed. Our paper presents a CNN-based method for fast, 

accurate and comprehensive evaluation using criteria such as 

roughness depth, edge slope tolerance, groove tracking and burr 

height. We have chosen a simple image acquisition system that is 

cost effective to ensure high quality production.

State of the Art

Traditional quality assessment of sheet metal relies on expert 

human inspection or complex analytical measurements. With 

deep learning's rise [2] image-based edge evaluations became 

feasible, automating feature engineering and outperforming 

rule-based systems. Stahl and Jauch [3] highlighted the use of 

images for edge roughness assessment. Tatzel et al. [4] enhanced 

this, predicting several roughness values per edge. Stahl et al. [5] 

evaluated edge slope tolerance and burr height, taking into 

account the effect of illumination on the prediction. De Mitri et 

al. [6] focused on edge segmentation to assess image sharpness 

for quality evaluation. Our method includes groove tracking 

assessment for a comprehensive evaluation of cut edges.

Methodology

Creation of the Dataset

The data generation process involved the production of 785 

square stainless steel samples, resulting in 3,140 cut edges. 

During production, various parameters were varied, including 

feed rate, gas pressure, nozzle-to-sheet distance and adjustment 

value. After production, the edges were measured using a 

Keyence VR3200 to obtain depth data from which criteria such 

as average roughness depth, edge slope tolerance, groove 

tracking and burr height were calculated.

Image Acquisition and Image Preprocessing

An industrial colour camera with a 35 mm MeVis-C lens and 

coaxial illumination is used to capture the images that highlight 

the surface topography. Transmitted light images are captured 

and binarised to be used as a mask to remove irrelevant image 

areas. Since CNN architectures are designed for square images, 

the rectangular images of the cut edges are divided in ten 

disjoint segments (see Figure 1), increasing the number of data 

points by a factor of ten. To avoid data leakage, these segments 

are assigned to either the training, validation or test groups. The 

predictions of the segments of an edge are averaged for each 

criterion to obtain a single prediction per criterion for an edge. Aug. R² (Rz5) R² (u) R² (n) R² (b) R² (avg.)

VGG16 no 85.6 % 77.1 % 87.3 % 96.0 % 86.5 %

VGG16 mod. 86.1 % 77.4 % 87.9 % 96.3 % 86.9 %

VGG16 strong 84.6 % 74.8 % 85.4 % 95.1 % 85.0 %

Xception no 85.8 % 79.2 % 87.7 % 96.2 % 87.2 %

Xception mod. 85.8 % 78.9 % 87.7 % 96.1 % 87.1 %

Xception strong 85.2 % 77.4 % 87.2 % 95.7 % 86.4 %

Figure 1: Example of preprocessed images. Using both transmitted and incident 

illumination allows for simultaneous segmentation, filtering out image regions 

that are not relevant for quality assessment.

Table 1: The accumulated prediction quality of the k-fold cross-validation is 

presented as the coefficient of determination R² for each criterion.

Figure 2: The accumulated predictions of the quality criteria in the test sets of the k-fold-cross validation using the Xception architecture without data augmentation.


