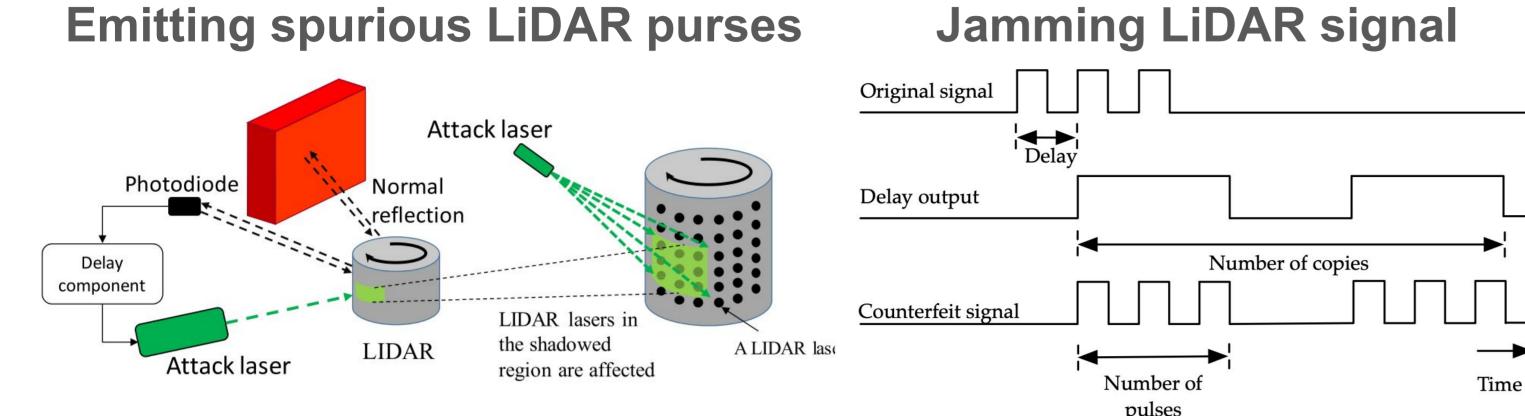
ADoPT: LiDAR Spoofing Attack Detection Based on Point-Level Temporal Consistency

Minkyoung Cho¹, Yulong Cao², Zixiang Zhou¹, Z. Morley Mao¹

1: University of Michigan 2: NVIDIA Research

Background

LiDAR Spoofing Attack



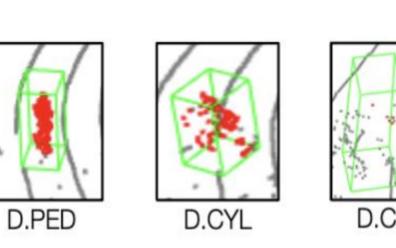
Physical law-based Defense

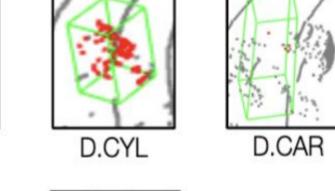
- Free and occluded space in **box**
- Shadow region dictated by **bbox**
- Point density in <u>bbox</u> and distance to sensor

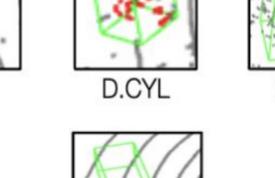
Consistency-based Defense

• Moving pattern of **bboxes**

- Dense Point Injection (< 200 points)
 - Visually recognizable fake object
 - Attack success rate: 96~97%
- Sparse Point Injection (< 64 points)
 - Difficult to visually identify
 - Attack success rate: < 21%

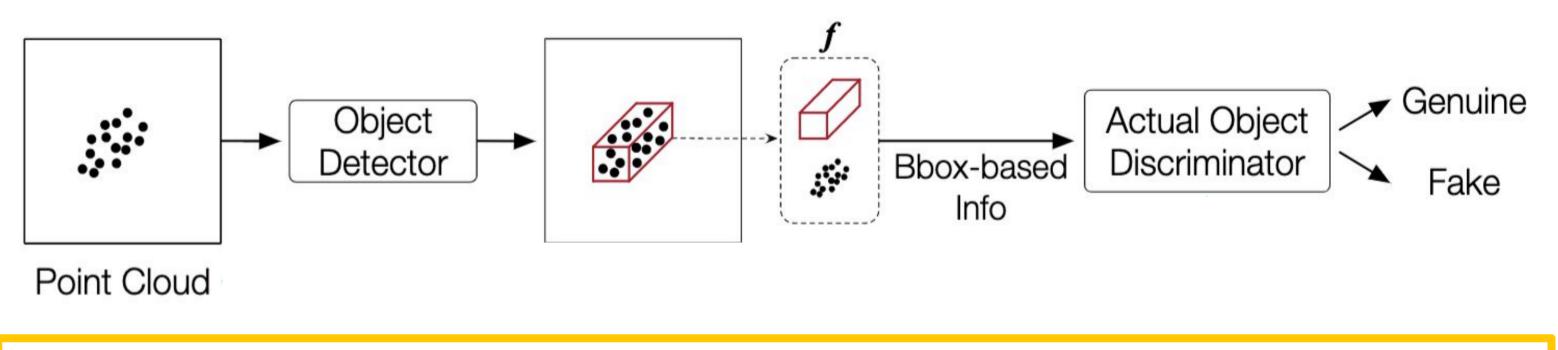






S.CAR

temporal consistency & motion prediction of <u>bboxes</u>

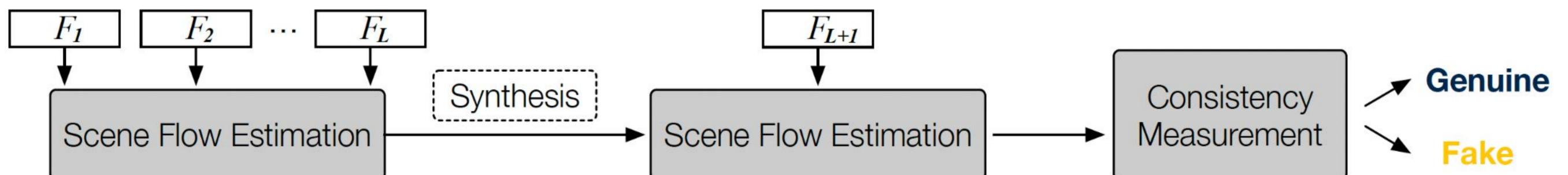


Previous Solutions

What if object detector yields erroneous bounding box info?

ADoPT: Anomaly Detection on Point-Level Temporal Consistency

How to quantitatively measure point-level temporal consistency and identify abnormal object? **KEY:** Object consists of point clusters with a certain degree of point intensity, moving coherently.

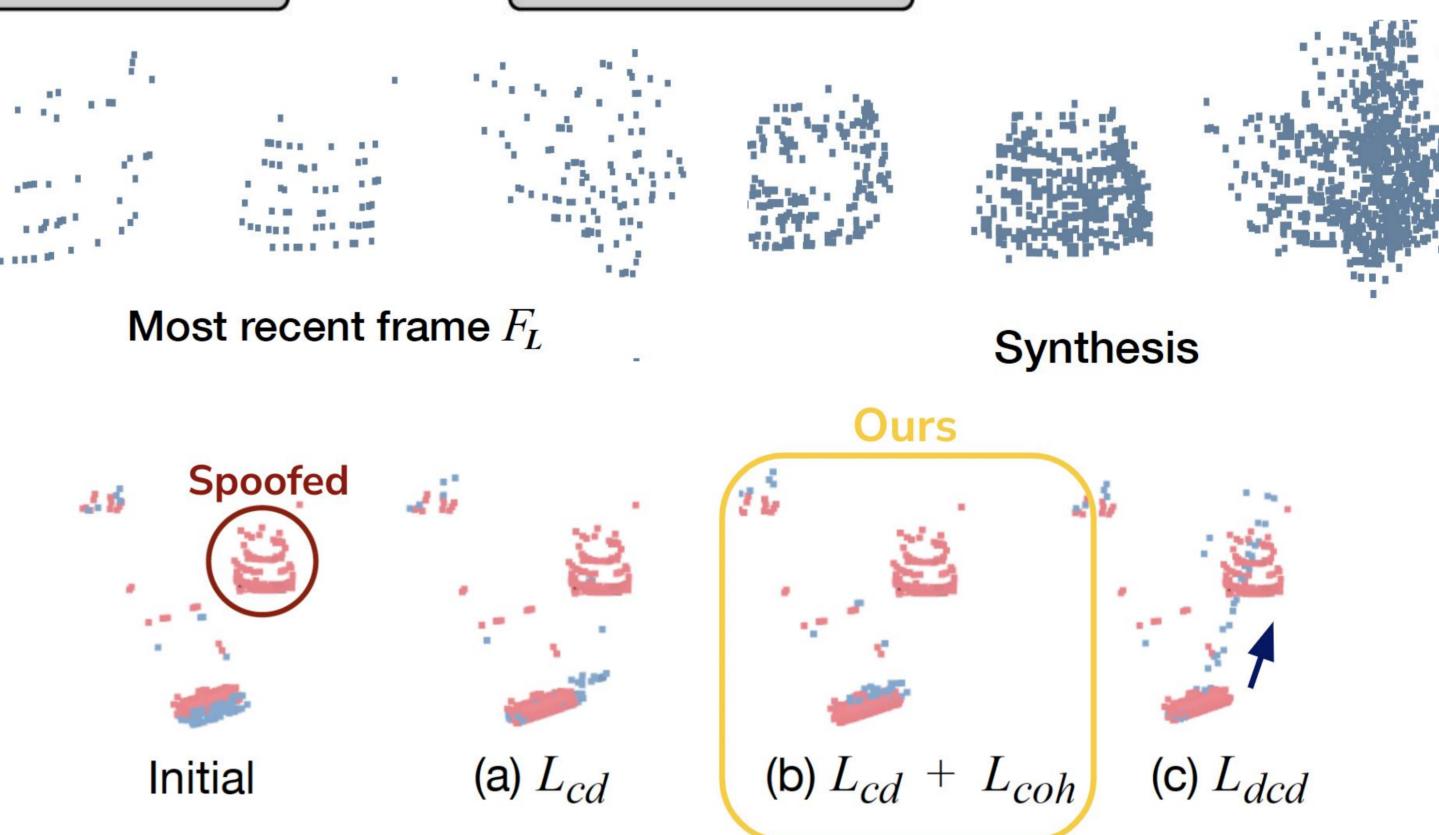


Coherence-Enhanced Scene Flow Estimation

- **Goal:** Make points of an object move coherently over time-series frames
- Online optimization-based scene flow estimation
 - Objective: Chamfer Distance + Coherence loss

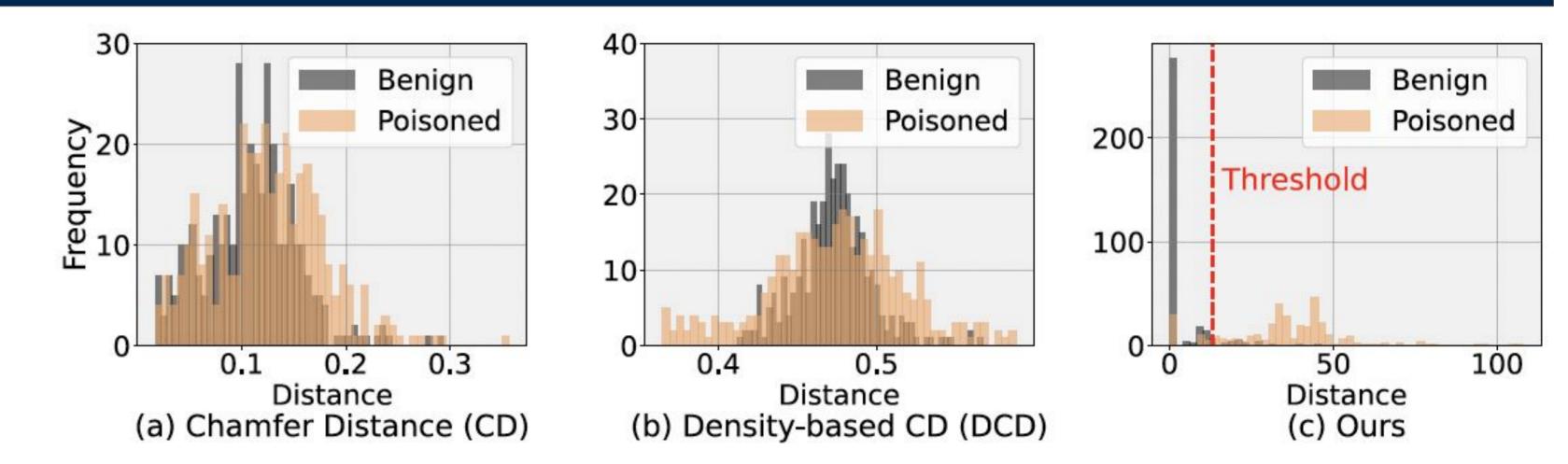
Cluster-based Consistency Measurement

- **Goal**: Distinguish between benign frame and poisoned frame
- Perform spatial clustering (DBSCAN) to find out clusters which exclusively contains points in F_{L+1}



Evaluation Results

 Our consistency metric allows for establishing a threshold for attack detection



ADoPT achieves lower false positive rates and higher true positive rates 100 **Dense Point Injection Sparse Point Injection** 75 (%) 50 Rate $FP\downarrow$ TP (D.CAR) \uparrow TP (D.CYL) \uparrow TP (D.PED) ↑ $FP\downarrow$ TP (S.CAR) \uparrow 25 CARLO [23] 47.2 47.9 48.0 48.0 54.4 49.4 3D-TC2 (PP) [33] 53.5 20.798.6 95.0 56.9 2 Sours 30-102 16.6 30702187 CARLO x C2 SOUTS CARLO 45.8 84.2 3D-TC2 (SEC) [33] 19.6 98.3 47.5 16.3 4.5 97.2 98.3 95.2 85.4 9.3 ADOPT **False Alarm True Alarm**