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1 - Abstract

A new approach for deep learning
with event cameras.

Digital camera

Operates directly on the event stream
. No intermediate aggregation

. Densifies sparse events via learned
decay functions.

Combines responsiveness of an SNN
with the efficiency and spatial reason-
ing of a CNN.

Code available
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EDeNN vs other learning styles

2 - Background - Event Cameras

. Event cameras are asynchronous visual sensors

. Brightness changes cause immediate signals from the sensor,
with no shutter based poling

. Numerous advantages: low-power, low bandwidth, high dynamic
range, and low world-to-sensor latency

. Disadvantage: No images, unclear how to apply traditional com-
puter-vision tools
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Event camera vs normal camera

3 - Background - Spiking Neural Networks

. SNN input: spikes of varying strength at arbitrary times
. Strong parallels to event camera data
. Neuron aggregates spikes with weightings as potential function
. Thresholded potential gives output spikes for the next layer
. Many input spikes create 1 output spike

. "Vanishing spike” problem for deep networks
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4 - EDeNN overview
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EDeNN potential
. Output is continuous potential function (unthresholded)
. No vanishing spikes!
. Potential function aggregates exponential decay of spikes
. No ramp up time or refractory period, learned decay rate

. Can apply to either spikes or continuous input

5 - EDeNN Details

5.1 - EDeC layer

. Event Decay Convolutions
. CNN style spatial convolution kernel
. SNN style temporal decay (learned per neuron)

. Spatiotemporal convolution - K2+1 params (not K3)
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Spatiotemporal convolution (left) vs EDeC (right)

5.2 - Separability & streaming inference

. Specialist filter design has valuable properties
. Separable: decompose spatial & temporal convs.
. Markov: Output depends on input and prev. output
. Output at time t and layer | comprises 2 terms
. Spatially convolved input from layer I-1 at time t
. Temporally decayed input from layer | at time t-1

. See paper for full derivation
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. Training can be performed in parallel over time

. Inference can be performed efficiently online

. No waiting for future information as with 3D CNN

5.3 -Weighted partial convolution

Partial convolutions used to ignore empty regions

. Avoids wasted computation
. Aids training stability

Weighted to counter effect of missing inputs
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Applied to spatial and temporal EDeC components

Novel reweighting scheme based on masked kernel
weights (not masked input values)
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6 - Results - Angular velocity estimation

. Event camera dataset
. Estimate rate-of-change for roll, pitch and yaw

. Compared vs SOTA on Voxel, Accumulated and Event inputs

Approach Data  Relative error RMSE  Step time
ANN-6 A% 0.22 59.00 -
ResNet-50 A 0.22 66.80 -
ResNet-50 \Y% 0.15 36.80 -
SNN-6 E 0.26 66.32 0.15
EDeNN E 0.12 27.99 0.08

State-of-the-art comparison for visual angular

velocity estimation

. EDeNN more accurate than best CNN
. EDeNN faster than best SNN

7 - Results - Optical flow estimation
. MVSEC dataset

. Semi-dense optical flow estimation

. Extremely challenging for SNNs (vanishing spikes)
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Run time vs accuracy (top right is best)

. EDeNNs achieve comparable accuracy to SOTA CNNs

. Order of magnitude faster runtime than second fastest
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Example optical flow results

. Flow direction (hue) matches well
. Near stationary scenes challenging (final row)
. Few events with high overlap
. Larger flow orientation errors
. EDeNN is effective at complex geometry like foliage

. Potential for future approaches to fuse events and RGB in
EDeNNs
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