
WALTERS, HADFIELD: EDENN 1

Supplementary Material for
EDeNN: Event Decay Neural Networks for low
latency vision
Celyn Walters
https://www.surrey.ac.uk/people/celyn-walters
Simon Hadfield
https://www.surrey.ac.uk/people/simon-hadfield

Centre for Vision, Speech and Signal
Processing (CVSSP)
University of Surrey
Guildford, UK

1 Scalar regression with EDeNNs - Network details
This section relates to section 4.1 from the main submission. The objective was to predict X ,
Y and Z angular velocity from an event stream.

The network consists of 4 encoder layers followed by a fully connected layer. The encoder
layers are made up of Event Decay Convolution (EDeC) kernels with our new formulation
for partial convolutions to cater to sparse event data. The decoder layers consist of nearest-
neighbour upsampling followed by 2D transpose convolutions. The activation function used
in each layer was CELU [1]. Table 1 shows layer structure and output tensor shapes. The code
was trained with supervision from the dataset of [2] with an initial learning rate of 1.0.

Layer type Shape (C, D, H, W)

(Input) 2, 100, 180, 240
Encoder layer 1 16, 100, 89, 119
Encoder layer 2 32, 100, 44, 59
Encoder layer 3 64, 100, 21, 29
Encoder layer 4 128, 100, 10, 14
Bottleneck 256, 100, 8, 12
Fully connected 3, 100, 1, 1

Table 1: Output tensor shapes for each layer in the Event Decay Neural Network (EDeNN) for the optical flow
task. Input layer consists of positive and negative events at the image resolution, and was padded from 346×260 to
352×272 for perfect division in the deeper layers.

2 Dense estimation with EDeNNs - Network details
This section relates to section 4.2 from the main submission. The objective was to predict
dense optical flow from an event stream.

The network consists of 4 encoder layers, a bottleneck layer, 4 decoder layers, and a fully
connected layer. The encoder layers are made up of EDeC kernels with our new formulation
for partial convolutions to cater to sparse event data. The decoder layers consist of nearest-
neighbour upsampling followed by 2D transpose convolutions. The activation function used
in each layer was CELU [1]. The best model was trained with supervision from the MVSEC
dataset [9] with an initial learning rate of 0.01. For the evaluation, pixel regions without input
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events or ground truth were masked, which is typical in other approaches. Table 2 shows layer
structure and output tensor shapes.

Layer type Shape (C, D, H, W)

(Input) 2, 100, 272, 352
Encoder layer 1 16, 100, 136, 176
Encoder layer 2 32, 100, 68, 88
Encoder layer 3 64, 100, 34, 44
Encoder layer 4 128, 100, 17, 22
Bottleneck 128, 100, 17, 22
Decoder layer 4 (prediction) 2, 100, 17, 22
Decoder layer 4 256, 100, 34, 44
Decoder layer 3 (prediction) 2, 100, 34, 44
Decoder layer 3 96, 100, 68, 88
Decoder layer 2 (prediction) 2, 100, 68, 88
Decoder layer 2 64, 100, 136, 176
Decoder layer 1 (prediction) 2, 100, 136, 176
Decoder layer 1 40, 100, 272, 352
Fully connected 2, 100, 272, 352

Table 2: Output tensor shapes for each layer in the EDeNN for the optical flow task. Input layer consists of positive
and negative events at the image resolution, and was padded from 346×260 to 352×272 for perfect division in the
deeper layers.

Table 3 shows the results seen in Figure 3 from the main submission. E-RAFT was
evaluated on the original ground truth from the MVSEC dataset. The implementations of
EV-FlowNet, FireNet and FireFlowNet are from [4]. The hardware used for obtaining the
results and step times was an Intel i9-10900K with an NVIDIA GeForce RTX 3090.

Approach AEE %outlier Resolution t (ms) t/res. ×109 (ms)

E-RAFT [3] 0.46 0.49 256×256×15 0.0326 33.1459
EV-FlowNet [8] 0.47 0.25 128×128×2 0.0042 128.0029
FireNet [7] 0.55 0.35 128×128×2 0.0015 45.6160
FireFlowNet [6] 1.02 1.62 128×128×2 0.0010 30.9749

LIF-EV-FlowNet [4] 0.53 0.35 128×128×2 0.0063 191.8583
LIF-FireNet [4] 0.57 0.40 128×128×2 0.0023 69.5087
LIF-FireFlowNet [4] 0.84 1.15 128×128×2 0.0021 65.3463

2D CNN, partial (ours) 2.22 25.53 352×272×24 0.0070 3.0249
EDeNN, partial [5] 1.06 4.64 352×272×24 0.0133 5.7879
EDeNN, partial (ours) 0.82 2.20 352×272×24 0.0129 5.5939

Table 3: Comparison of event-based optical flow approaches on the MVSEC dataset [9]. t represents the average
step time for the forward pass over the test sequence on identical hardware.
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