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. Specialised spatio-temporal convolution Pendulum  CartPole  Pong  MountainCar
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Average rewards of different RL techniques
. See our oral paper here at BMVC

—600

— CERIL
— NatureCNN

Events ! | BN -700

. Agent chooses actions based on current environmental state EDNN |

W : ‘ ~800 — NatureCNN-e
3 - Background - Reinforcement Learning ‘ " 00 — SN
' : : trms] ’r% ~1000
. Long horizon strategic machine learning (e.g. game playing) Inout Events g 1100
: : : -1200
. No ground truth right or wrong answers _ ~1300
uld Ot —1400
. Maximize reward function across game | ‘ ‘ oo
L : . i : = U T e i) 0 20k 40k 60k 80k 100k
. Tradltlonally Iterative process 5 5 felmetany pe Environment step /
SNN potentia *

Pendulum training curves

. Environment executes actions and returns new state

—

— CERIL
— NatureCNN

400

% — NatureCNN-e
@ — SNN
/ 5.3 - Losses g
State, Reward Action
. Projection head loss: regularises vision system 0k a0k 60k 8Ok 100k 120k/
. Requires that states are recoverable from features Emvironment step
. Continuous variant of Proximal Policy Optimisation CartPole training curves
. Policy loss: integral of clipped advantage function 20
— CERIL
. Critic loss: integral of critic/reward disagreement | Temeres
, _ . Evaluated at discrete times based on control loop speed. _ s W
Reinforcement learning process 2 o
& -5
-10
-15
-20
+ Environment logs rewards and states 0 02M 04M 06M 08M IM  1IM 14M 1-6M/
Environment step
4 - CER1L overview + Encoder |ogs feature volumes based on simulated events

. . . Pong training curves
+ Modules asynchronously insert items to the rollout buffer + Actor/Critic logs actions, values and advantage functions
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CERIL system flow. Blue arrows are insertions into the rollout buffer. Yellow arrows are extractions. Red are losses.
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