UNIVERSITY OF

1 - Abstract

- A new approach for **reinforcement learning** with **event cameras.**
- Operates **directly** on the event stream using **EDeNNs** (see our oral @BMVC)
- No intermediate aggregation
- **Continuous** input observation stream and output action stream
- Wrapper code for simple application to any "Gymnasium" style RL environment

Code available

Traditional vision based RL, vs discrete event based RL, vs CERiL

2 - Background - Event Cameras

- Event cameras are **asynchronous** visual sensors
- Brightness changes cause **immediate** signals from the sensor, with no shutter based poling
- Numerous advantages: low-power, low bandwidth, high dynamic range, and low world-to-sensor latency
- Disadvantage: No images, unclear how to apply traditional computer-vision tools

Event camera vs normal camera

3 - Background - Reinforcement Learning

- Long horizon **strategic** machine learning (e.g. game playing)
- **No ground truth** right or wrong answers
- Maximize reward function across game
- Traditionally iterative process
- Agent chooses actions based on current environmental state
- Environment executes actions and returns new state

Reinforcement learning process

Modules asynchronously insert items to the rollout buffer

• Losses query the buffer and are computed on any entries found

5 - CERiL Details

5.1 - Continuous rollout generation

- Generic wrapper for OpenAl Gym environments
- Render environment every step
- Event-Camera Simulator (**ESIM**) turns discrete renders into continuous-time event stream

CERiL: Continuous Event-based

ESIM converts environment renders to events

5.2 - Continuous feature encoding

- Event Decay Neural Network (**EDeNN**) on events
 - Specialised spatio-temporal convolution
 - CNN style **spatial convolution** kernel
 - SNN style **temporal decay** (learned per neuron)
- Dense feature encoding from sparse events

5.3 - Losses

- Projection head loss: regularises vision system
 - Requires that states are recoverable from features
- Continuous variant of Proximal Policy Optimisation
- **Policy loss**: integral of clipped advantage function • **Critic loss:** integral of critic/reward disagreement
- Evaluated at discrete times based on control loop speed.

Environment logs rewards and states

- Encoder logs feature volumes based on simulated events 4 - CERiL overview
 - Actor/Critic logs actions, values and advantage functions
 - Projection head logs estimated state

CERiL system flow. Blue arrows are insertions into the rollout buffer. Yellow arrows are extractions. Red are losses.

6 - Evaluation

6.1 - Environments

- **Pendulum:** Apply torque to swing up & balance pole
- **Dense Reward** = pole verticality angle torque use

- CartPole. Use linear actuated cart to balance inverted pole
- **Keep-alive reward** = +1 per step pole is upright

- Pong. Move a paddle up and down to deflect bouncing balls past an autonomous opponent paddle
- **Sparse reward** = +1 if agent wins a round, -1 if it loses

- MountainCar. Oscillate linear actuated cart to escape valley
- **Terminate ASAP reward** = -1 for every step in episode

6.2 - State-of-the-art comparison

• Compared against SOTA visual RL algorithms (CNNs and SNNs) on events and RGB

Approach	Input data format	Average rewards Pendulum CartPole Pong MountainCa			MountainCar
			Cartifole	Tolig	
NatureCNN [9]	RGB	-1242.2	9.4	17.9	-200.0
NatureCNN-e [9]	2D event image	-1236.6	137.4	15.0	-200.0
SNN [6]	Event stream	-1177.1	87.3	-17.2	-200.0
CERiL (ours)	Event stream	-638.7	438.8	1.0	-97.6

Average rewards of different RL techniques

Pendulum training curves

CartPole training curves

Pong training curves

Mountaincar training curves

- CERiL performs very favourably compared to all other visual RL approaches
- Pong is challenging: long term planning required vs short term event aggregation
- Only CERiL can solve MountainCar