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Introduction Results
= Depth completion: Infill and interpolate a sparse depth image to a
dense depth image, using an RGB image as a guide. Model RMSE | (mm) MAE | (mm)
PENet [1] /57.2 209.0
DySPN [3] /394 1914
SemAttNet 2] /38.1 2045
Recurrent (Ours) 722.2 204.0

Table 2. Comparison to SOTA methods on the KITTI depth completion validation set.

= Our method achieves a new SOTA result on the KITTI depth
completion validation set.
= Sequence data and pose information are required, which the test set does not
contain. These are available in a real-world setting.

= Most SOTA approaches are non-temporal and use a U-Net-style

backbone followed by a spatial propagation refinement network.
= PENet [1], SemAttNet [3], DySPN [2] = We also observe a large improvement in regions which do not

contain ground truth or input depth in the current timestep.

= We propose a recurrent depth completion architecture, which is able
to effectively combine information from multiple timesteps of input.
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& = Our method excels in regions with sparse sampling, but doesn'’t lead

to much improvement in regions where warping Is incorrect.
= Box (D) highlights a region with cars often moving on the opposing lane.

= \WWe build on the open-source PENet [1] which consists of a U-Net-like
backbone followed by a spatial propagation refinement network.

= We introduce recurrency with warped previous depth and hidden
history as input to the network from the previous timestep.
= The warping/reprojection is performed using the corresponding pose matrix
between the timesteps.

= Hidden history is a single output channel from the last convolution of the U-Net Recurrent (Ours) better
packbone.
= Temporally-aware training is performed using truncated 'Iﬂ.ll ] —

backpropagation through time (TBPTT).

= TBPTT(k,ko): ki = weight update interval, k; = backpropagation length CIDZ

Configuration RMSE | (mm) [MAE | (mm)

. PENet better G
Baseline //3.9+£3.2 218.0£0.8
Drev. Depth, TBPTT(1.1) 7624 (-11.5) 12151 = The recurrent method is worse on the first timestep when still
Drev. Depth, TBPTT(1.2), Hidden 758.5(-15.4) 214.2 uninitialized, but on average 50 RMSE better after the second
Warped Prev. Depth, TBPTT(1,1) /28.7 (-45.2) 204.9 fimestep.
Warped Prev. Depth, TBPTT(1,2), Hidden 720.8 (-53.1) 203.5
Table 1. Ablation metrics for the full KITTI depth completion validation set. 900  » » Recurrent (Ours)
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= The most popular benchmark is KITTI depth completion with ~94k
iImages. Sparse depth input contains 6% valid depth values and
oround truth contains 16% valid depth values.
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