

Temporal Lidar Depth Completion

Pietari Kaskela Philipp Fischer Timo Roman

NVIDIA Applied Deep Learning Research

Introduction

Depth completion: Infill and interpolate a sparse depth image to a dense depth image, using an RGB image as a guide.

Most SOTA approaches are non-temporal and use a U-Net-style

Model	RMSE↓(mm)	MAE↓(mm)
PENet [1]	757.2	209.0
DySPN [3]	739.4	191.4
SemAttNet [2]	738.1	204.5
Recurrent (Ours)	722.2	204.0

Table 2. Comparison to SOTA methods on the KITTI depth completion validation set.

- Our method achieves a new SOTA result on the KITTI depth completion validation set.
 - Sequence data and pose information are required, which the test set does not contain. These are available in a real-world setting.

Results

- backbone followed by a spatial propagation refinement network. PENet [1], SemAttNet [3], DySPN [2]
- We propose a recurrent depth completion architecture, which is able to effectively combine information from multiple timesteps of input.

Method

- We build on the open-source PENet [1] which consists of a U-Net-like backbone followed by a spatial propagation refinement network.
- We introduce recurrency with **warped previous depth** and **hidden history** as input to the network from the previous timestep. • The warping/reprojection is performed using the corresponding pose matrix between the timesteps. Hidden history is a single output channel from the last convolution of the U-Net backbone. Temporally-aware training is performed using truncated backpropagation through time (TBPTT). • TBPTT (k_1,k_2) : k_1 = weight update interval, k_2 = backpropagation length

• We also observe a large improvement in regions which do not **contain ground truth or input depth** in the current timestep.

• Our method excels in regions with sparse sampling, but doesn't lead to much improvement in regions where warping is incorrect. Box (D) highlights a region with cars often moving on the opposing lane.

Configuration	RMSE↓(mm)	MAE↓(mm)
Baseline	773.9±3.2	218.0±0.8
Prev. Depth, TBPTT(1,1)	762.4 (-11.5)	215.1
Prev. Depth, TBPTT(1,2), Hidden	758.5 (-15.4)	214.2
Warped Prev. Depth, TBPTT(1,1)	728.7 (-45.2)	204.9
Warped Prev. Depth, TBPTT(1,2), Hidden	720.8 (-53.1)	203.5

Table 1. Ablation metrics for the full KITTI depth completion validation set.

Dataset

The recurrent method is worse on the first timestep when still uninitialized, but on average 50 RMSE better after the second timestep.

- The most popular benchmark is **KITTI depth completion** with \sim 94k images. Sparse depth input contains 6% valid depth values and ground truth contains 16% valid depth values.
- Mu Hu et al. "Towards Precise and Efficient Image Guided Depth |1| Completion". 2021.
- Yuankai Lin et al. Dynamic Spatial Propagation Network for Depth |2| Completion. 2022.
- Danish Nazir et al. "SemAttNet: Towards Attention-based Semantic 31 Aware Guided Depth Completion". 2022.

https://nv-adlr.github.io/

BMVC 2023, Aberdeen — 20-24.11.2023

pkaskela@nvidia.com