
Goal
Improve efficiency of deep neural networks (DNNs) by 
leveraging mixed precision quantization and dynamic 

execution via early exit

McQueen : Mixed Precision Quantization of 
Early Exit Networks

Utkarsh Saxena and Kaushik Roy (Purdue University)

MCQUEEN FRAMEWORK

MOTIVATION

BACKGROUND: EARLY EXIT NETWORKS
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▪ Parametric Differentiable Quantizer learns
weight/activation quantizer precision during
training.
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▪ We introduce following gradient to learn quantizer
precision :
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▪ To constrain precision to low values, we add a
regularization penalty to the loss function based on
bit-wise operations (BOPs) of the multi-exit model.
Total loss is :
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𝑏𝑜𝑝𝑙 − 𝑏𝑜𝑝𝑡𝑎𝑟𝑔𝑒𝑡 |▪ Backbone model is augmented with shallow exit
classifiers to terminate classification of “easy”
samples early saving computational effort.

▪ Training multi-exit model leads to a considerable drop
in final classifier accuracy.

▪ Accuracy drop attributed to high gradient interference
(low similarity) between gradients from exit classifiers
(𝑔𝑒𝑥𝑖𝑡) and gradients from final classifier (𝑔𝑓𝑖𝑛𝑎𝑙) .
Gradient masking is proposed to mitigate this:

𝑔𝑙𝑎𝑦𝑒𝑟 = 𝑔𝑓𝑖𝑛𝑎𝑙 +𝑚𝑎𝑠𝑘 ⊙ 𝑔𝑒𝑥𝑖𝑡 ,
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▪ Gradient Masking improves on inference performance when
compared with naïve multi-exit training.
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RESULTS ON IMAGENET

▪ Comparison with homogenous quantization.

▪ Comparison with mixed precision quantization.

▪ Learned Precisions

Method Precision top-1 Delta BOPs FP top-1

DoReFa [38] 2/2 64.7 -5.0 14.36 69.7

PACT [4] 2/2 64.4 -5.8 14.36 70.2

LSQ [7] 2/2 67.6 -2.9 14.36 70.5

N2UQ [22] 2/2 69.4 -2.4 14.36 71.8

McQueen 2/2 67.4 -2.3 9.38 69.7

DoReFa [38] 3/3 67.5 -2.2 22.84 69.7

PACT [4] 3/3 69.2 -1.0 22.84 70.2

LSQ [7] 3/3 70.2 -0.3 22.84 70.5

N2UQ [22] 3/3 70.0 0.1 22.84 71.8

McQueen 3/3 70.0 0.3 17.0 69.7

Method Precision top-1 Delta BOPs FP top-1

SPOS [9] 3MP/3MP 69.4 -1.5 21.92 70.9

FracBits [36] 3MP/3MP 69.4 -0.8 22.93 70.2

LLI [28] 3MP/3MP 69.0 -0.6 23.02 69.6

DQ-Net [23] 3MP/3MP 69.8 0.0 27.18 69.8

McQueen 3MP/3MP 70.0 0.3 23.15 69.7

SPOS [9] 4MP/4MP 70.5 -0.4 31.81 70.9

FracBits [36] 4MP/4MP 70.6 0.4 34.7 70.2

LLI [28] 4MP/4MP 70.1 0.5 33.05 69.6

DQ-Net [23] 4MP/4MP 70.4 0.6 42.49 69.8

McQueen 4MP/4MP 70.8 1.0 32.3 69.7
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Key Insight : Combining dynamic execution with 

quantization can enhance gains in efficiency.
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Model/Dataset Precision w/o EE w/ EE

ResNet-20/CIFAR-10 2/2 89.3 88.9

ResNet-18/ImageNet 2/2 67.6 66.4

ResNet-18/ImageNet 3MP/3MP 69.8 69.1

ResNet-18/ImageNet 8/8 69.7 69.5

Challenges
Precision Selection : Assigning different precision 

to layer-wise weights and activations of multi-exit 
model presents a huge design space.  
Training multi-exit model : Naïve training of 

quantized multi-exit model leads to considerable drop 
in workload accuracy. 
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