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1 Appendix

1.1 Parametric Differentiable Quantizer (PDQ)
PDQ enables training of quantizer scaling factor α , quantizer threshold β and quantizer
precision n during training. Given data to quantize x, the quantizer threshold β and scaling
factor α , the quantized representation xq is given by,

xq = α · clip(⌊ x
β
⌉,Qn,Qp) (1)

where, ⌊·⌉ is the round function, Qn and Qp are integer clipping bounds determined by the
quantizer precision n. For signed x, Qp = ⌊2n−1 −1⌉ and Qn = ⌊−2n−1⌉; while for unsigned
x, Qp = ⌊2n − 1⌉ and Qn = 0. Gradient derivation for PDQ parameters is simplified when
the quantizer is written as,

xq =


αQp , ⌊ x

β
⌉ ≥ Qp

α⌊ x
β
⌉ , Qn < ⌊ x

β
⌉< Qp

αQn , ⌊ x
β
⌉ ≤ Qn

(2)

The gradient for scaling factor α is derived using,

∂L

∂α
=

∂L

∂xq
·

∂xq

∂α
(3)

∂L
∂xq

is the layer weight or activation gradient obtained using Pytorch Autograd. Finally, ∂xq
∂α

is obtained using eq 2 as follows,

∂xq

∂α
=


Qp , ⌊ x

β
⌉ ≥ Qp

⌊ x
β
⌉ , Qn < ⌊ x

β
⌉< Qp

Qn , ⌊ x
β
⌉ ≤ Qn

(4)

Similarly, gradient for quantizer threshold β is derived using,

∂L

∂β
=

∂L

∂xq
·

∂xq

∂β
(5)
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∂xq
∂α

is obtained using eq 2 as follows,

∂xq

∂β
=


0 , ⌊ x

β
⌉ ≥ Qp

−αx
β 2 , Qn < ⌊ x

β
⌉< Qp

0 , ⌊ x
β
⌉ ≤ Qn

(6)

For signed data, gradients for precision n is derived using,

∂L

∂n
=

∂L

∂xq
·

∂xq

∂Qp
·

∂Qp

∂n
+

∂L

∂xq
·

∂xq

∂Qn
· ∂Qn

∂n
(7)

=
∂L

∂xq
· (2n−1ln(2)) · (

∂xq

∂Qp
−

∂xq

∂Qn
) (8)

(9)

∂xq
∂Qp

is derived using eq. 2 as follows,

∂xq

∂Qp
=

{
α , ⌊ x

β
⌉ ≥ Qp

0 , otherwise
(10)

Similarly, ∂xq
∂Qn

is derived using eq. 2 as follows,

∂xq

∂Qn
=

{
α , ⌊ x

β
⌉ ≤ Qn

0 , otherwise
(11)

For unsigned data, Qn = 0, therefore gradients for precision n is derived using,

∂L

∂n
=

∂L

∂xq
·

∂xq

∂Qp
·

∂Qp

∂n
(12)

=
∂L

∂xq
· (2nln(2)) ·

∂xq

∂Qp
(13)

(14)

∂xq
∂Qp

is given by eq. 10.

1.2 Gradient similarity visualizations
This section provides additional visualizations on gradient similarity with exits placed at
different intervals of the backbone model. The visualizations are shown in Fig. 1, Fig. 2 and
Fig. 3. Following observations can be made from the figures,

1. Gradient masking considerably improves the similarity between gradients from exit
classifiers and gradients from final classifier.

2. Often the similarity is lower than 0 for the initial layers if backbone model. First layer
receives the most diverged gradient.

3. Exits added to earlier layers of the model have much severe impact in gradient simi-
larity than exits added at later layers.
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Figure 1: Gradient similarity for Resnet-20 with exits placed after layer 3,5,7,9. (Bold lines
show the moving average)

Figure 2: Gradient similarity for Resnet-20 with exits placed after layer 7,9,11,13 (Bold lines
show the moving average)
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Figure 3: Gradient similarity for Resnet-20 with exits placed after layer 11,13,15,17 (Bold
lines show the moving average)

Network
(W/A)

ResNet18 trained on ImageNet
4/4

ResNet18 trained on ImageNet
3/3

Stage 1
(Full precision finetuning)

Stage 2
(Quantization Search)

Stage 3
(Quantized Finetuning)

Stage 4
(Training Ensemble Model)

Stage 1
(Full precision finetuning)

Stage 2
(Quantization Search)

Stage 3
(Quantized Finetuning)

Stage 4
(Training Ensemble Model)

Epoch 30 60 90 1 30 60 90 1
Batch size 512 512 512 512 512 512 512 512
Teacher – – Resnet-101 – – – Resnet-101 –

Optimizer SGD w/ momentum SGD w/ momentum SGD w/ momentum SGD w/ momentum SGD w/ momentum SGD w/ momentum SGD w/ momentum SGD w/ momentum
Initial lr 0.001 0.001 0.001 0.0001 0.001 0.001 0.001 0.0001

lr scheduler Cosine Cosine Cosine – Cosine Cosine Cosine –
Weight decay 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
Momentum 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9

Random Crop ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Random Flip ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

bop target N/A 0 N/A N/A N/A 0 N/A N/A
gamma N/A 0.035 N/A N/A N/A 0.05 N/A N/A

Table 1: Hyperparameters for Training ResNet18 on ImageNet
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1.3 Hyperparameters for training
When comparing our results with the baselines in the main paper, we use the hyperparame-
ters shown in Table 1. Generally, the hyperparameters are primarily same for all the training
stages. We observed that lower learning rate provided better results when training the en-
semble model during the fourth training stage. For stage 1,2,3 of training, cosine learning
rate scheduling provided the best results.

1.4 Early Exit inference policy
We experiment with different confidence threshold values t and patience counter n and eval-
uate the inference performance (Fig. 4). We plot Acc v/s BOPs curve where BOPs are
determined by number of samples exiting early. t and n impact number of samples exiting
early affecting BOPs. We see that patience counter n of 1 provides higher accuracy at same
BOPs.

Figure 4: Accuracy v/s BOPs obtained for different confidence threshold t (shown in red)
and patience counter n for 4-bit multi-exit ResNet-20 with exits placed at (a) Layer {3,5,7,9},
(b) Layer {7,9,11,13}, and (c) Layer {11,13,15,17}

1.5 Precision Assignment
We plot the evolution of weight and activation precision during training, shown in Fig. 5 and
Fig. 6. Starting from 8-bit, the layer precisions decrease heavily during initial iterations and
then the decrement slows down. Finally, the precisions are rounded to the nearest integer
for subsequent training stages. We observe that linear layer precisions remain minutely
perturbed. This is because the contribution to BOPs from linear layers is significantly low
and consequently, the regularization penalty to reduce precision is low.
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Figure 5: Precision evolution of 4-bit ResNet-18 model layers during training.



276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

AUTHOR(S): BMVC AUTHOR GUIDELINES 7

Figure 6: Precision evolution of 4-bit ResNet-18 model exit and downsample layers during
training.


