

DFFG: Fast Gradient Iteration for Data-free Quantization

Huixing Leng¹, Shuangkan Fang¹, Yufeng Wang², Zehao Zhang¹, Dacheng Qi¹, Wenrui Ding²

¹School of Electronic and Information Engineering, Beihang University

²Institute of Unmanned System, Beihang University

Abstract

Model quantization is a technique that optimizes neural network computation by converting weight parameters and activation values from floating-point numbers to low-bit integers or fixed-point representations.

Currently, common quantization methods, such as QAT and PTQ, optimize quantization parameters using training data to achieve the best performance. However, in practical applications, there may be little or no data available for downstream model quantization due to restrictions such as privacy and security. This article proposes a data-free quantization technique called DFFG, based on fast gradient iteration, which uses information learned from the full-precision model, such as the BN layer, to recover the distribution of the original training data.

We propose, for the first time, using a momentum-assisted variant of the FGSM gradient iteration strategy to update the generated data. This approach enables quick perturbation of the optimized data while maintaining the diversity of the generated data through the manipulation of gradient variability. We also propose using intermediate data generated during the iteration process as a part of data for subsequent model quantization, greatly improving the speed of data generation. We have demonstrated the effectiveness of our proposed method through empirical evaluations.

Preliminary Formulation

Quantizer : Uniform quantizer

$$egin{aligned} & heta^q = round \left(heta imes S - Z
ight), \ S = rac{2^n - 1}{u - l}, \ Z = S imes l + 2^{n - 1} \ & heta' = rac{ heta^q + Z}{S} \end{aligned}$$

Optimizer : MI-FGSM

$$egin{aligned} g_{t+1} &= \mu \cdot g_t + rac{J\left(x_t^*, y^*
ight)}{\left\|
abla_x J\left(x_t^*, y^*
ight)
ight\|_1} \ x_{t+1}^* &= x_t^* - oldsymbol{arepsilon} \cdot ext{sign}\left(g_{t+1}
ight) \end{aligned}$$

Method

DFFG : Data generation + Quantization(QAT)

Step1 : Data generation

Loss function :

$$\mathcal{L}_{total} = \mathcal{L}_{BNS} + lpha_{ ext{tv}} \mathcal{R}_{ ext{TV}}(\mathbf{x}_i) + oldsymbol{lpha}_{\ell_2} \mathcal{R}_{\ell_2}(\mathbf{x}_i) + oldsymbol{eta}\mathcal{L}_{CE}$$

Optimizer : MI-FGSM

Speed up strategy :

save images multiple times during a complete iteration cycle

Step2 : Quantization(QAT)

Loss function :

$$\mathcal{L}^Q = \mathcal{L}^Q_{ ext{CE}} + lpha \cdot \mathcal{L}^Q_{ ext{KD}}$$

Experiments & Results

Ouantitative Results :

Dataset	Model	Bit width	Real Data	ZeroQ	DSG	ZAQ	Qimera	GDFQ	IntraQ	DFFG (ours)
		3w3a	87.94	69.53	48.99	2		71.1	77.07	84.68
CIFAR-10	ResNet-20 (93.89)	4w4a	91.52	89.66	88.93	92.13	91.26	90.25	91.49	91.63
		5w5a	-	-	-	93.36	93.46	93.38	-	93.30
		3w3a	56.26	26.35	43.42	-	-	43.87	48.25	52.13
CIFAR-100	ResNet-20	4w4a	66.8	63.97	62.62	60.42	65.1	63.58	64.98	66.30
	(70.33)	5w5a	-	-	-	68.7	69.02	67.52	93 - 1	69.30
	ResNet-18	4w4a	67.89	63.38	63.11	52.64	63.84	60.6	66.47	66.69
	(71.59)	5w5a	70.31	69.72	69.53	64.54	69.29	66.82	69.94	70.03
CIFAR-100 ImageNet	MobileNetV2	4w4a	67.9	60.15	60.45	0.1	61.62	51.3	65.10	65.63
	(73.08)	5w5a	72.01	70.95	70.87	62.35	70.45	68.14	71.28	71.53
	ResNet-50	4w4a	-	2	2	53.02	66.25	54.16	194	69.47
	(77.76)	5w5a	-	-	-	73.38	75.32	71.63	-	75.83

Ablation Studies :

a) quantization effect between Adam and MI-FGSM

model	Bit width	Adam	DFFG	Diff	
	3w3a	37.68	43.06	+5.38	
ResNet-18	4w4a	66.28	66.69		
(71.59)	5w5a	70.09	70.03	-0.06	
ResNet-50	4w4a	67.46	69.47	+2.01	
(77.76)	5w5a	75.52	75.83	+0.31	

Visual generated images :

b) image CLIP similarity between Adam and MI-FGSM

