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Superfeatures in a Highly Compressed Latent Space

A novel approach that embeds convolutional features into the corresponding 
superpixel areas through metric learning. The resulting ultra-compact image 
representations enable us to learn video object segmentation (VOS) from a 
small dataset of unlabeled still images.
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Offline phase: frame-mask sequences are synthesized using saliency detection 
and data augmentation; superpixels are extracted. 
Online phase: Convolutional features are shared between two branches, one for 
superfeature generation with a contrastive NT-Xent loss and the other for 
segmentation refinement with a cross-entropy loss. A memory clustering module is 
used to store and retrieve information from past frames.

SHLS Training

Combining superpixels and features in superfeatures

The features inside a superpixel are averaged, for each channel, yielding 
NxCL1 and NxCL4 vectors. These vectors are fed into fully-connected layers, 
resulting in a 2xS vector, which is passed through a 1x1 convolution to 
generate the superfeature.

Memory Clustering

Our memory clustering mechanism provides short- and long-term information 
by measuring similarity distances among superfeatures in the latent space.

Short-term: is based 
on k-NN searches and 
responds quickly to 
immediate changes in 
the objects during 
short intervals.

Long-term: computes 
distances from the 
query superfeatures to 
the centroids of class-
specific clusters. 

Quantitative Results

Benchmark on DAVIS-2017 validation set. SHLS is trained with at least 102 
orders of magnitude fewer images than other self-supervised methods.
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Takeaways

- A superfeature model that provides highly compressed superpixel-based 
representations.
- A memory clustering approach for retrieving information from past frames 
efficiently.
- A fully self-supervised VOS method trained with only 10k still images.


