MENDONCA, FONTINELE AND OLIVEIRA: SHLS FOR SELF-SUPERVISED VOS 1

SHLS: Superfeatures Learned From Still
Images For Self-supervised VOS -
Supplementary Material

Marcelo Mendonga'? "Intelligent Vision Research Lab
marceloms@ufba.br Federal University of Bahia

Jefferson Fontinele' 2Federal Institute of Education, Science
jeffersonfs@ufba.br and Technology of Bahia - IFBA
Luciano Oliveira' Bahia, Brazil

Irebouca@ufba.br

1 Object mask estimation and pseudo-sequence synthesis

To obtain pseudo-masks, our underlying assumption is that image regions with high saliency
response also present high objectness. We employ a learning-based saliency detector [5] that
is trained in a self-supervised manner. Figure 1 shows saliency maps estimated for images
from the MSRA10K [1] dataset. Moving from left to right in the figure, we observe the fol-
lowing issues: (i) certain foreground objects, such as the boy’s bike, may go undetected; (ii)
in the case of multiple objects, such as the individuals, the saliency map may not distinguish
between them; (iii) object sub-parts often appear rounded and fused together, as seen in the
petals of the flower; (iv) saliency maps generated from background-only images, such as the
window, tend to be diffuse; and (v) detection failures are more likely to occur, particularly
when the foreground is not centered in the image, as in the case of the dog.

Figure 1: Sahency detection by applying [5 on 1mages from MSRAIOK [1]. The examples
show issues that eventually occur in the detection process: (i) object not detected (bike); (ii)
multiple objects not distinguished from each other (persons); (iii) object sub-parts rounded
and glued together (flower petals); (iv) diffuse saliency map generated for background-only
image (window); and (v) detection failure due to object not centralized (dog).
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Figure 2: Examples of generated pseudo-sequences. The sequences are comprised of pairs
of pseudo-frames and pseudo-masks containing a variable number of objects in different
conditions: (a) single-object sequence with partial disappearance; (b) multi-object sequence
with total disappearance and reappearance situation; and (c) multi-object sequence with a
cloned foreground object.

We treat those issues by discarding images with a saliency response that is too small or
completely empty. The other minor issues illustrated in Fig. 1 are less crucial since our
approach involves extracting any detected foreground to create a pseudo-frame. In these
cases, whether sub-parts of an object are misidentified or multiple objects are combined,
they will be considered distinct and complete objects in the resulting composite frame.

Figure 2 displays some frame-mask pair sequences from our pseudo-sequence generation
process, showcasing the different data augmentation techniques we have implemented in
our algorithm. The sequences are based on the images from the MSRA10K dataset [1],
which contains 10,000 images. With our methodology, we can create an unlimited number
of pseudo-sequences to train our VOS method in a self-supervised manner.

2 Feature extractor architecture

Our feature extractor is a modified version of ResNet-18 [2]. The specific configuration
is outlined in Table 1, which consists of five primary layers. The first layer is a simple
convolution, while the remaining layers are residual blocks, each comprising a convolution,
batch normalization, ReLU non-linearity, another convolution, and batch normalization. To
generate the superfeatures, the outputs of layers 2 and 5 (with 1/2 and 1/4 spatial sizes,
respectively) feed our superfeature embedding model.

3 Details on the segmentation refinement module

The proposed segmentation refinement module is designed as a single-object module. This
means that, although our VOS method is intended for multi-object segmentation, during the
segmentation refinement, the task is divided into a series of single-object segmentations. The
goal is to allow for this module to learn a simpler, more specific task, with support from the
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Input: H x W x 3 (RGB image)

Output size
Spatial Depth

Stage Type

layer 1  convolutional H/2xW/2 64 channels

layer 2 residual block H/2xW /2 64 channels

layer 3  residual block H/4xW/4 128 channels

layer4  residual block H/4xW /4 256 channels

layer 5  residual block H/4xW /4 256 channels
Table 1: Feature extractor configuration. This network is a modified version of the ResNet-
18 [2] to enlarge the spatial size of the output feature map. The architecture includes five
layers, with the first layer comprising a single convolution. The remaining layers are residual
blocks, each one formed by the sequence: convolution, batch normalization, rectified linear
units (ReLU), convolution and batch normalization again.

previous modules. As depicted in Figure 3, the components of the module comprise three
main stages: ROI selection, feature modulator and feature decoder.

ROI selection: For each object, the ROI obtained from the pre-segmentation mask is used
to select the inputs to feed the feature modulator stage. As shown in Figure 3 (top), the
ROI selection process includes two possible pathways: in case of inputs with unchanged
spatial dimensions, we simply select the ROI and resize it to the target dimensions; in case
of down-sampled inputs, we apply the ROI align function [4].

Feature modulator: This stage receives ROI-based feature maps from the feature extractor,
specifically the L1 and L4 feature maps, as well as attention maps from the memory clus-
tering. The feature modulator is then fed with features and attention maps from the current
frame, along with the last segmented frame in the sequence. This facilitates the network’s
ability to learn to segment the current frame smoothly based on the previous segmentation.
As depicted in Figure 3 (middle), the feature modulator architecture includes a branch with
the softmax function, serving as a gate to modulate features from the parallel branch. The
resulting feature map, denoted as M4 in the figure, is subsequently passed to the next stage,
the feature decoder.

Feature decoder: The feature decoder, as shown in Figure 3 (bottom), utilizes refinement
blocks [6] to integrate features from branches at different scales. The first merged branch
combines the mask prediction of the previous frame with the concatenated L1 feature maps
and mask annotation of the first frame. The second merged branch incorporates the L4
features from the first frame and the modulated features from the modulator stage. Prior to
entering the first refinement block, these features undergo convolutions and residual blocks
[3] to adjust the channel count. A second refinement block is then employed to establish
skip connections by incorporating previously used inputs, including the L1 features of the
first frame and the attention maps of the current frame. Finally, the output of this refinement
block passes through a final convolution layer, generating a 2-channel object prediction.

Figure 4 compares ground-truth annotations (red) with pre-segmentations (blue) and re-
fined masks (green) generated by our method from some frames of the DAVIS-2017 dataset
[7]. As can be seen, the refined segmentations present a more regular object mask, with
smoother contours that resemble the shape delineated in the ground-truth more closely.
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Figure 3: Segmentation refinement module. The ROI selection stage (top) provides two pos-
sible pathways: for inputs with unchanged scale, the ROl is selected and the height and width
are resized to the target dimensions; for down-sampled inputs, the ROI align function [4] is
applied. The feature modulator stage (middle) combines the L1 features and the attention
maps in a softmax-based gate mechanism that modulates the L4 features. Finally, the feature
decoder stage (bottom) relies on residual and refinement blocks to reduce the channels and

increase the spatial dimensions of the features in order to predict the object masks.
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Frame #10 Frame #20 Frame #30
Figure 4: Comparison between ground-truth and generated masks. The top row displays
the ground-truth masks (red) for the object in the frames number 10, 20 and 30 of a video
sequence from DAVIS-2017 [7]. The middle row displays the pre-segmentation (blue) ob-
tained by classifying the superpixels directly. The bottom row displays the mask predictions
(green) produced by the segmentation refinement module operating pixel-wisely.

4 Further analysis of the memory clustering

Figure 5 illustrates the behavior of our model over time in terms of segmentation self-
consistency. We have formulated this metric to measure the variation in segmentation per-
formance throughout the frame sequence. For each video, self-consistency is computed by
dividing the segmentation accuracy (in terms of J&JF) achieved for each predicted mask
in the sequence by the accuracy achieved in the first predicted mask. The values shown in
Figure 5 represent the average self-consistency of our method in segmenting the videos of
the validation split in the DAVIS-2017 dataset [7], considering an interval of 80 frames.
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Figure 5: Self-consistency over time. The plots depict the variation of segmentation per-
formance of our VOS method along the frame sequence, comparing two scenarios: with a
memory mechanism (blue) and without memory (orange). The graph highlights the benefits
of including a memory mechanism in the proposed solution, as it improves segmentation
self-consistency over time.
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The graph demonstrates a significant degradation in segmentation performance when the
memory mechanism is absent, with accuracy dropping to less than 50% of the initial perfor-
mance around frame #65. Conversely, when the memory clustering is employed, the perfor-
mance loss is considerably reduced, maintaining above 60% of the initial result throughout
the entire interval.

5 Qualitative results

Figures 6 and 7 provide some qualitative results generated by SHLS on videos of the DAVIS-
2017 [7]. Each row corresponds to a different video from the validation set, and includes the
manually annotated first frame on the left and three segmented frames on the right (at 33%,
66%, and 99% of the video progress time). The videos are arranged in descending order
based on the J & F score achieved by our method for each video individually.

In Figure 6, we show examples where SHLS achieved J&JF higher than its average
performance (68.5). In Figure 7, we show examples where severe segmentation failures
occurred.

71.6

33% 66% 99% T&F
Figure 6: Quahtatlve results - Part I: Examples of object segmentations generated by SHLS

on videos of the DAVIS-2017 validation set [7] with 7 &F higher than average (68.5). From
left to right: the manually annotated first frame followed by three segmented frames at 33%,
66%, and 99% of the video progress time. The rows are arranged in descending order based
on the J &F score achieved by SHLS for each video individually.
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Figure 7: Qualitative results - Part II: Examples of object segmentations generated by SHLS
on videos of the DAVIS-2017 validation set [7] with 7 &F lower than average (68.5). From
left to right: the manually annotated first frame followed by three segmented frames at 33%,
66%, and 99% of the video progress time. The rows are arranged in descending order based
on the J &F score achieved by SHLS for each video individually.
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