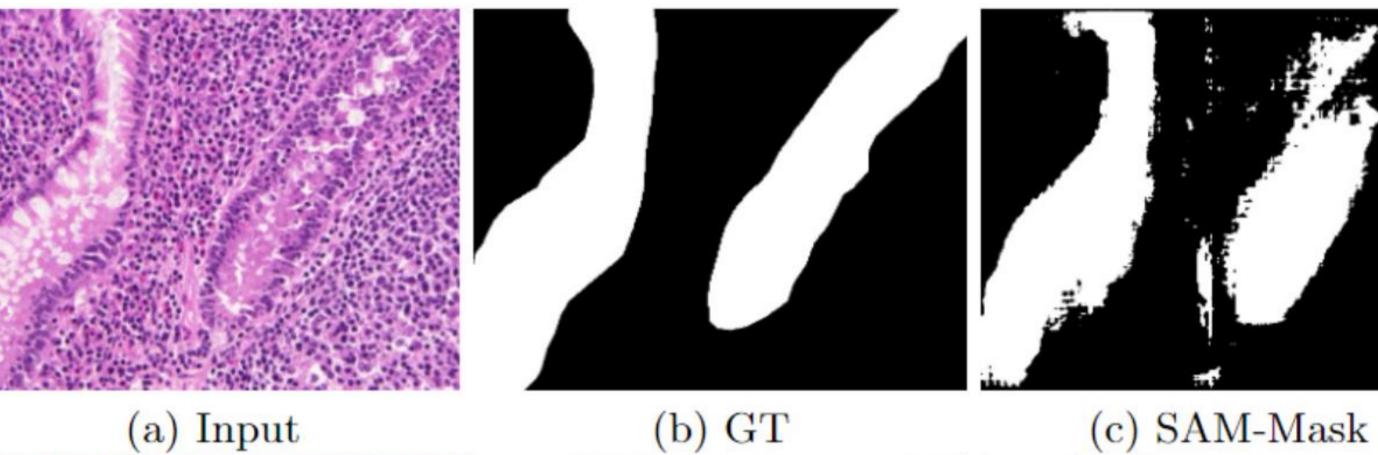


AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt Encoder Tal Shaharabany, Aviad Dahan, Raja Giryes, Lior Wolf

Introduction

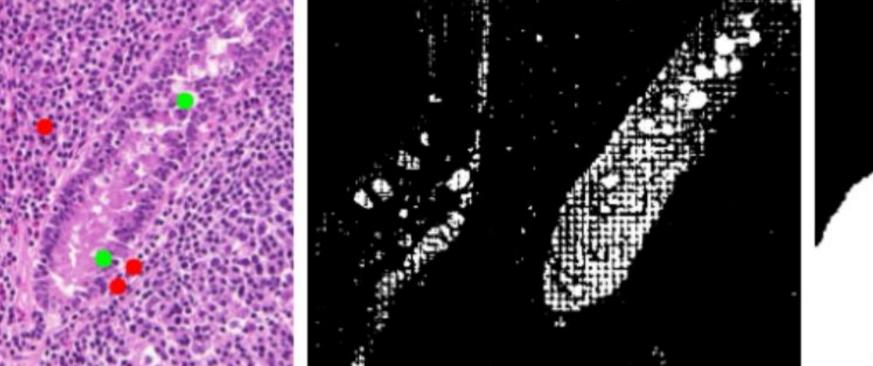
Segment Anything Model

The promptable image segmentation model is an efficient and practical approach to real-world segmentation tasks that allows for flexibility in prompts, quick mask computation, and ambiguity awareness.
 However, SAM's performance may not be optimal on medical imaging datasets due to its pre-training on natural images.



Our Work

- We propose an end-to-end approach to improve segmentation mask accuracy for medical images without fine-tuning the pretrained SAM network.
- Our solution involves the training of an auxiliary prompt encoder network, which generates a surrogate prompt for SAM given an input image.
 While the prompt encoder provided with SAM requires inputs such as a bounding box, a set of points, or a mask, the one we train has the image itself as its input.



(e) SAM-Point

(f) AutoSAM

Method			Results						
Input Image	Image SAM ViT image SAM mask Patches encoder decoder	Output Mask	Method	Monu		GlaS			
				Dice	IoU	Dice	IoU		
The second second			FCN [2]	28.84	28.71	_	_		
			U-Net [35]	79.43	65.99	86.05	75.12		
THEN PRECINCE		\rightarrow	U-Net++ [58]	79.49	66.04	87.36	79.03		
			Res-UNet [53]	79.49	66.07	-	-		
			Axial Attention [50]	76.83	62.49	-	-		
			MedT [47]	79.55	66.17	88.85	78.93		
	Frozen SAM		FCN-Hardnet85 [5]	79.52	66.06	89.37	82.09		
	Encoded Feature		UCTransNet [49]	79.87	66.68	89.84	82.24		
	Our Prompt Enco	oder	3P-SEG [37]	80.30	67.19	91.19	84.34		
			MedAdaptor-SAM [52] (conditioned on GT points)	80.34	67.33	92.02	85.88		
The SAM network Spre	valuces an output segmentation may	b M by taking the input image		0 A 1 A		0.0.00	~ ~ ~ ~		

The SAM network S produces an output segmentation mask M_z by taking the input image I and the prompts' embedding Z:

$$M_z = S(I,Z),\tag{1}$$

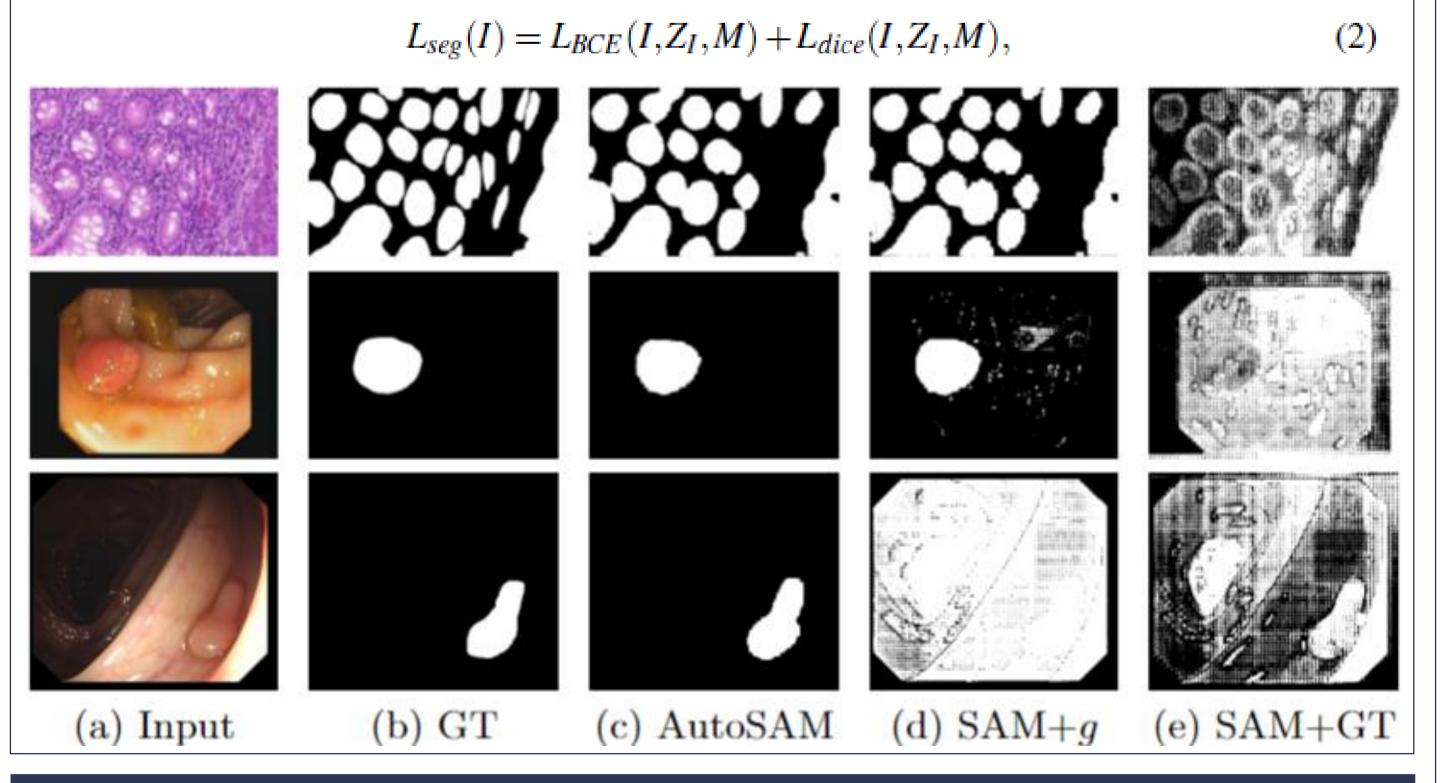
(d) Point Prompt

The prompts embedding Z can be any representation of different prompts, such as masks, boxes, and points.

Instead of using the original prompts encoder, we introduce a prompts generator network, denoted as g, that generates guidance prompts Z_I for SAM given an input image I. g is the only network trained by our method.

This prompts generator network g takes as input the image I and generates prompts $Z_I = g(I)$ for SAM to improve its segmentation mask output.

While training our method, the SAM network *S* propagates gradients to the prompts generator network *g* from two segmentation losses that we employ: the binary cross-entropy loss (BCE) and the Dice loss. The BCE loss is given by the negative log-likelihood of the ground truth mask *M* and the SAM output $S(I, Z_I)$, while the Dice loss measures the overlap between the predicted and ground truth masks. Formally, the losses are expressed as:



AutoSAM (ours)	82.43	70.17	92.82	87.08
Lightweight decoder $h(g(I))$	76.75	62.32	91.51	84.80
SAM w/ GT point prompt	29.65	17.52	61.67	46.40
SAM w/ GT mask as prompt	30.24	18.21	58.46	42.81
SAM w/ AutoSAM output as the mask prompt	58.10	41.26	87.71	79.92

Method	Kvasir33 [19]		Clini	ic [3]	Colon [43]		ETIS [40]	
method	Dice	IoU	Dice	IoU	Dice	IoU	Dice	IoU
U-Net [35]	81.8	74.6	82.3	75.5	51.2	44.4	39.8	33.5
U-Net++ [58]	82.1	74.3	79.4	72.9	48.3	41.0	40.1	34.4
SFA [14]	72.3	61.1	70.0	60.7	46.9	34.7	29.7	21.7
MSEG [18]	89.7	83.9	90.9	86.4	73.5	66.6	70.0	63.0
DCRNet [54]	88.6	82.5	89.6	84.4	70.4	63.1	55.6	49.6
ACSNet [56]	89.8	83.8	88.2	82.6	71.6	64.9	57.8	50.9
PraNet [12]	89.8	84.0	89.9	84.9	71.2	64.0	62.8	56.7
EU-Net [32]	90.8	85.4	90.2	84.6	75.6	68.1	68.7	60.9
SANet [51]	90.4	84.7	91.6	85.9	75.3	67.0	75.0	65.4
Polyp-PVT [8]	91.7	86.4	93.7	88.9	80.8	72.7	78.7	70.6
FCN-Hardnet85 [5]	90.0	84.9	92.0	86.9	77.3	70.2	76.9	69.5
3P-SEG [37]	91.8	86.5	93.8	89.0	80.9	73.4	79.1	71.4
Lightweight decoder $h(g(I))$	86.5	79.6	88.5	82.0	80.7	72.4	71.5	63.0
AutoSAM (ours)	91.0	87.0	92.8	89.3	83.0	76.7	79.7	74.0

SUN_SEG_Fagy

SUN_SEG_Ward

Conclusion

- SAM is a powerful segmentation model for natural images.
- It has the potential to become a prominent foundation model, i.e., be effective for downstream tasks such as medical image analysis.
- We show that this may only require ``the right guidance'' in the form of a dedicated conditioning signal that is provided by an auxiliary network that replaces the prompt embedding.
- As no prompt is required, our method turns SAM into a fully automatic method.

Method	SUN-SEG-Easy							SUN-SEG-Hard				
	\mathcal{S}_{lpha}	E_{ϕ}^{mn}	F^w_β	F_{β}^{mn}	Dice	Sen	\mathcal{S}_{lpha}	E_{ϕ}^{mn}	F^w_β	F_{β}^{mn}	Dice	Sen
UNet [35]	0.669	0.677	0.459	0.528	0.530	0.420	0.670	0.679	0.457	0.527	0.542	0.429
🖉 UNet++ [59]	0.684	0.687	0.491	0.553	0.559	0.457	0.685	0.697	0.480	0.544	0.554	0.467
ACSNet [56]	0.782	0.779	0.642	0.688	0.713	0.601	0.783	0.787	0.636	0.684	0.708	0.618
BraNet [11]	0.733	0.753	0.572	0.632	0.621	0.524	0.717	0.735	0.544	0.607	0.598	0.512
SANet [51]	0.720	0.745	0.566	0.634	0.649	0.521	0.706	0.743	0.526	0.580	0.598	0.505
AutoSAM(ours)) 0.815	0.855	0.716	0.774	0.753	0.672	0.822	0.866	0.714	0.764	0.759	0.726

COSNet [28]	0.654 0.600 0.431 0.496 0.596 0.359 0.670 0.627 0.443 0.506 0.606 0.380
MAT [57]	0.770 0.737 0.575 0.641 0.710 0.542 0.785 0.755 0.578 0.645 0.712 0.579
😴 PCSA [16]	$0.680\ 0.660\ 0.451\ 0.519\ 0.592\ 0.398\ 0.682\ 0.660\ 0.442\ 0.510\ 0.584\ 0.415$
🛱 2/3D [33]	0.786 0.777 0.652 0.708 0.722 0.603 0.786 0.775 0.634 0.688 0.706 0.607
🔓 AMD [26]	$0.474\ 0.533\ 0.133\ 0.146\ 0.266\ 0.222\ 0.472\ 0.527\ 0.128\ 0.141\ 0.252\ 0.213$
🖞 DCF [55]	$0.523\ 0.514\ 0.270\ 0.312\ 0.325\ 0.340\ 0.514\ 0.522\ 0.263\ 0.303\ 0.317\ 0.364$
FSNet [21]	0.725 0.695 0.551 0.630 0.702 0.493 0.724 0.694 0.541 0.611 0.699 0.491
PNSNet [20]	0.767 0.744 0.616 0.664 0.676 0.574 0.767 0.755 0.609 0.656 0.675 0.579
VPS+ [22]	0.806 0.798 0.676 0.730 0.756 0.630 0.797 0.793 0.653 0.709 0.737 0.623