Dual Feature Augmentation Network for Generalized Zero-shot Learning

Lei Xiang¹, Yuan Zhou¹, Haoran Duan², Yang Long² ¹Nanjing University of Information Science and Technology ²Durham University

Motivation

BM

2023

- >The complex entanglement among different attributes' visual features in the embedding space.
- The diversity of attributes in images of the same category leads to inaccurate predictions.
- ≻Using a single mapping function to map different granular visual features to semantic space degrades model performance.

Contribution

- We propose a visual feature augmentation that explicitly extracts attribute features and adopts a cosine similarity loss to disentangle them in the embedding space, enhancing the visual features.
- We propose a semantic feature augmentation containing a **bias learner**, which estimates an offset to alleviate the difference between the actual and predicted attributes, leading to improved class-level semantic features for each image.
- We employ **two mapping functions** to avoid inconsistencies in the mapping process of different granular visual features, thus reinforcing the semantic features corresponding to varying visual features.

Region-wise Weighted Sum $\mathcal{L}_{cos} = \left\| \hat{Z}^T \hat{Z} - I \right\|_2$ $\mathcal{L}_{attr} = -\log \frac{C_{attr}}{\sum_{k=1}^{C_s}}$ $\exp{\langle \hat{a}_l, a_y
angle}$ $_1 \exp{\langle \hat{a}_l, a_k \rangle}$

Visual Feature Augmentation

$${\mathcal{L}}_{cls}\!=\!-\log\!rac{\exp{\langle\hat{a}_g,a_y
angle}}{\sum_{k=1}^{C_s}\exp{\langle\hat{a}_g,a_k
angle}}$$

Methods	CUB				SUN				AWA2			
	GZSL		CZSL		GZSL		CZSL	GZSL			CZSL	
	U	S	Н	acc	U	S	Н	acc	U	S	Н	acc
Generative Methods												
f-VAEGAN-D2 [48.4	60.1	53.6	61.0	45.1	38.0	41.3	64.7	57.6	70.6	63.5	71.1
E-PGN [52.0	61.1	56.2	72.4	-	_	-	_	52.6	83.5	64.6	73.4
Composer [56.4	63.8	59.9	69.4	55.1	22.0	31.4	62.6	62.1	77.3	68.8	71.5
GCM-CF [61.0	59.7	60.3	-	47.9	37.8	42.2	_	60.4	75.1	67.0	-
CE-GZSL [63.9	66.8	65.3	77.5	48.8	38.6	43.1	63.3	63.1	78.6	70.0	70.4
FREE [5]	55.7	59.9	57.7	-	47.4	37.2	41.7	-	60.4	75.4	67.1	-
Non-generative Methods												
DAZLE [56.7	59.6	58.1	_	52.3	24.3	33.2	_	60.3	75.3	67.1	-
APN [65.3	69.3	67.2	72.0	41.9	34.0	37.6	61.6	57.1	72.4	63.9	68.4
GEM-ZSL [🗖]	64.8	77.1	70.4	77.8	38.1	35.7	36.9	62.8	64.8	77.5	70.6	67.3
SR2E [61.6	70.6	65.8	-	43.1	36.8	39.7	-	58.0	80.7	67.5	-
MSDN [🛛]	65.3	69.3	67.2	72.0	52.2	34.2	41.3	65.8	62.0	74.5	67.7	70.1
TransZero [6]	69.3	68.3	68.8	76.8	52.6	33.4	40.8	65.6	61.3	82.3	70.2	70.1
ours	65.4	79.7	71.8	77.3	51.0	36.4	42.5	67.9	58.9	88.0	70.5	67.4
The best, second-best and third-best results are marked in Red , Blue and Green , respectively.												

Method

and $\hat{Z} = [\hat{z}_1, ..., \hat{z}_m]$

where a_y is the ground truth semantic feature

Results

Comparison with State-of-the-Art Methods

Experiments

Effect of different modules

	С	UB			S	A				
GZSL			CZSL		GZSL				GZSL	
U	S	Η	acc	U	S	Η	acc	U	S	
54.3	72.2	62.0	65.0	43.3	22.8	29.8	53.6	56.8	76.4	
60.8	80.3	69.2	76.0	39.7	32.2	35.6	58.5	55.5	87.3	
63.2	81.2	71.1	76.7	38.8	33.2	35.7	59.3	55.1	88.9	
	U 54.3 60.8 63.2	C GZSL U S 54.3 72.2 60.8 80.3 63.2 81.2	CUB GZSL U S H 54.3 72.2 62.0 60.8 80.3 69.2 63.2 81.2 71.1	CUB GZSL CZSL U S H acc 54.3 72.2 62.0 65.0 60.8 80.3 69.2 76.0 63.2 81.2 71.1 76.7	CUB CZSL GZSL CZSL U S H acc U 54.3 72.2 62.0 65.0 43.3 60.8 80.3 69.2 76.0 39.7 63.2 81.2 71.1 76.7 38.8	CUB S GZSL CZSL GZSL U S H acc U S 54.3 72.2 62.0 65.0 43.3 22.8 60.8 80.3 69.2 76.0 39.7 32.2 63.2 81.2 71.1 76.7 38.8 33.2	CUB SUN GZSL CZSL GZSL U S H acc U S H 54.3 72.2 62.0 65.0 43.3 22.8 29.8 60.8 80.3 69.2 76.0 39.7 32.2 35.6 63.2 81.2 71.1 76.7 38.8 33.2 35.7	CUB SUN GZSL CZSL GZSL CZSL U S H acc U S H acc 54.3 72.2 62.0 65.0 43.3 22.8 29.8 53.6 60.8 80.3 69.2 76.0 39.7 32.2 35.6 58.5 63.2 81.2 71.1 76.7 38.8 33.2 35.7 59.3	CUB SUN CZSL GZSL CZSL GZSL CZSL U S H acc U S H acc U 54.3 72.2 62.0 65.0 43.3 22.8 29.8 53.6 56.8 60.8 80.3 69.2 76.0 39.7 32.2 35.6 58.5 55.5 63.2 81.2 71.1 76.7 38.8 33.2 35.7 59.3 55.1	

Effect of loss components

Methods		С	UB			S	AW				
	GZSL			CZSL		GZSL		CZSL	GZSL		
	U	S	Н	acc	U	S	Н	acc	U	S	
\mathcal{L}_{cls}	54.3	72.2	62.0	65.0	43.3	22.8	29.8	53.6	56.8	76.4	
\mathcal{L}_{attr}	51.8	69.4	59.3	61.5	45.3	26.5	33.5	62.0	50.6	88.4	
\mathcal{L}_{cls} + \mathcal{L}_{attr}	60.8	80.3	69.2	76.0	39.7	32.2	35.6	58.5	55.5	87.3	
$\mathcal{L}_{cls} + \mathcal{L}_{attr} + \mathcal{L}_{cos}$	65.4	79.7	71.8	77.3	51.0	36.4	42.5	67.9	58.9	88.0	

Effect of coefficients (β 1, β 2)

 \succ In fine-grained datasets, the CZSL accuracy and the harmonic mean increase first and then decrease.

0 € 525.5 (0.0,1.0) (0.1,0.9) (0.2,0.8) (0.3,0.7) (0.4,0.6) (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1) (1.0,0.0) Combination Coefficients (b) SUN

 \succ For the coarse-grained dataset, as the value of β 1 gradually increases, the CZSL accuracy and the harmonic mean decrease and reach a minimum when β 1 equals 1.

