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In this supplementary material, we provide the followings:

• Formal definitions related to BTP and LSH.

• Formal descriptions of the target LSHs (IoM-type LSHs [6] and ABH [7]).

• Detailed reformulation processes into LSPs on each LSH.

• Detailed experimental settings.

Notation. Throughout this supplementary material, we denote a vector in Rn as a boldface
lowercase letter x = (x1,x2, · · · ,xn), and the inner product of two vectors x and y as x ·y. We
denote a matrix as a boldface uppercase letter, e.g., M. For a set of all integers between 1 and
n, we use the notation [n]. An algorithm is denoted by H(x;r), where x is the input, and r is an
additional parameter such as random source for probabilistic algorithms. N (µ,C) denotes

a Gaussian distribution with a mean µ and a covariance matrix C. For a finite set S, x $←− S
denotes that x is uniformly sampled from S. A metric space is denoted by a pair (X ,dX ) of
a set X and the corresponding metric dX defined on X . We denote sgn : R→ {−1,1} as a
function that returns a sign of the given real-valued number. We shall define sgn(0) = 1 for
the sake of correctness.
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A Formal Definitions

In this section, we provide the formal definitions omitted in the main paper.

A.1 Biometric Template Protection

We first give a formal definition of biometric authentication systems. The biometric authen-
tication system is defined as a pair of algorithms (Ext, V ), each of which stands for feature
extraction algorithm and verification algorithm, respectively. The formal description is given
below.

Definition 1 (Biometric Authentication System). Let I be a set of biometrics and (X ,dX ) a
metric space. A biometric authentication system defined over (I,(X ,dX )) with a threshold
parameter τ is a pair of deterministic algorithms (Ext,V ), where

• Ext is the extraction algorithm mapping from I to X .

• V is the verification algorithm that takes a pair of vectors (x,y) ∈ X 2 and outputs 1 if
dX (x,y)≤ τ , and 0 otherwise.

Note that the definition of a biometric authentication system does not capture the privacy
threats of the biometric information. The following scheme named Biometric Template Pro-
tection (BTP) is an extension of a biometric authentication system, which has an additional
process called transformation to protect the biometric templates generated by Ext. The BTP
consists of two deterministic algorithms (Ext,V ) and a probabilistic algorithm T satisfying
the following definition.

Definition 2 (Biometric Template Protection). A biometric template protection scheme over
(I,(X ,dX ),R,(S,dS)) is a triple of algorithms (Ext,V,T ), where Ext and V are defined as
in Definition 1 and T is a transformation algorithm defined as follows:

• T takes x ∈ X (transformation object) and R ∈R (randomness) as inputs and outputs
an element in the metric space (S,dS).

Recall that in the main text, we expected additional properties to be satisfied: First, T
should be difficult to invert, even when randomness R is disclosed to the public. Second, the
transformation T should almost preserve the distance for each randomness R such that close
vectors map to close vectors. The first property enables us to use a pair (T (Ext(img);R),R)
as a new (protected) template for img ∈ I instead of Ext(img). The second property enables
the closeness between original templates to be tested by testing the (protected) templates
because, for a fixed R, the closeness between (T (Ext(img);R),R) and (T (Ext(img);R),R) is
equivalent to the closeness between Ext(img) and Ext(img)1.

1For a successful test, a public R is necessary. For this reason, we expect the onewayness of T even when R is
disclosed to the public.
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A.2 Locality-Sensitive Hashing

We now give a detailed explanation of locality-sensitive hashing (LSH) including its formal
definition. LSH, first discussed in [4], is a collection of “similarity preserving” functions.
The formal definition of LSH is as follows:

Definition 3 (Locality Sensitive Hashing). Let H be a collection of functions from a metric
space (X ,dX ) to a finite set S. We assume thatH is (τ1,τ2, p1, p2)-sensitive if it satisfies the
following two properties: For any x,y ∈ X ,

(1) if dX (x,y)< τ1, then Pr[h(x) = h(y)]> p1

(2) if dX (x,y)> τ2, then Pr[h(x) = h(y)]< p2.

The probability space is determined by the choice of h ∈H.

The (τ1,τ2, p1, p2)-sensitive collection H can be naturally extended to the (τ1,τ2, pn
1, pn

2)-
sensitive collection G, including g(x) defined as

g(x) = (h1(x),h2(x), · · · ,hn(x)),

where h1,h2, · · · ,hn are distinct functions independently chosen fromH.
From this, we define a metric on Sn as the Hamming distance dS2. If we assume that

h1,h2, · · · ,hn are independently sampled, then the distance between the two outputs is closely
related to τ1 and τ2. That is, we can consider g as a similarity-preserving map because it can
distinguish whether the two given vectors are sufficiently close or not. By the convention of
the literature on LSH-based BTP proposals, we denote the collection G as LSH rather than
that appearing in the original definition. We note that the random sampling of g ∈ G in the
definition of LSH can be achieved by introducing an additional random parameter on g.

B Formal Descriptions of Previous LSHs

We give concrete descriptions of the target LSHs mentioned in the main text: GRP-IoM,
URP-IoM [6], and ABH [7]. Prior to the explanation, we first introduce the first LSH-based
BTP called BioHashing [5]. BioHashing consists of two algorithms, Setup and Hashing.
Given two positive integers, d and m, as system parameters, BioHashing is defined as fol-
lows.

• Setup, denoted by SBH, is a probabilistic algorithm that outputs a m×d matrix R. Row
vectors {r1,r2, · · · ,rm} of R are independently sampled from N (⃗0, Id).

• Hashing, denoted by HBH, is a deterministic algorithm that takes a real-valued vector
x∈Rd and internal parameter R generated by Setup. This algorithm outputs an integer
vector α = (α1, · · · ,αn) ∈ [m]n, where αi = sgn(ri ·x).

2The distance between two given strings of the same length is defined as the number of different entries for each
position.
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B.1 GRP-IoM

GRP-IoM consists of two algorithms, Setup and Hashing. Given three positive integers, d,m
and n, as system parameters, GRP-IoM is defined as follows.

• Setup, denoted by SGRP, is a probabilistic algorithm that outputs a set of matrices
R =

{
R(1), . . . ,R(n)

}
such that R(i) ∈ Rm×d for i ∈ [n]. In addition, row vectors{

r(i)1 ,r(i)2 , · · · ,r(i)m

}
of R(i) are independently sampled from N (⃗0, Id).

• Hashing, denoted by HGRP, is a deterministic algorithm that takes a real-valued vector
x∈Rd and internal parameter R generated by Setup. This algorithm outputs an integer
vector α = (α1, · · · ,αn) ∈ [m]n, where αi = argmaxk∈[m]r

(i)
k ·x

The formal description of HGRP is provided in Algorithm 1.

Algorithm 1 GRP-IoM.HGRP

Require: x ∈ Rd ,n ∈ N, and m ∈ N
1: for i ∈ [n] do
2: Set r(i)j ←N (⃗0, Id) for j ∈ [m]

3: Set αi← argmax j∈[m]r
(i)
j ·x for j ∈ [m]

4: Set R(i)←
[
r(i)1 ∥· · ·∥r

(i)
m

]T

5: end for
6: Set R←

{
R(1),R(2), · · · ,R(n)

}
7: Set α ← (α1, · · · ,αn)
8: return (α,R)

B.2 URP-IoM

Another IoM-type LSH called URP-IoM takes four positive integers, d,n, p, and w, as system
parameters, where d must be greater than w.

• Setup, denoted by SURP, is a probabilistic algorithm that outputs a set of permutations

Σ =
{

σ
(i, j) : i ∈ [n], j ∈ [p]

}
from [d] to itself such that each element is uniformly and independently sampled from
the set of all permutations from [d] to itself.

• Hashing, denoted by HURP, is a deterministic algorithm that takes a real-valued vector
x∈Rd and internal parameter Σ generated by Setup. This algorithm outputs an integer
vector α = (α1, · · · ,αn) ∈ [w]n, where αi = argmaxk∈[w]

(
∏

p
j=1 σ (i, j)(x))

)
k
.

The formal description of HURP is provided in Algorithm 2.



PAIK, KIM, SEO: SECURITY ANALYSIS ON LSH-BASED BTP SCHEMES 5

Algorithm 2 URP-IoM.HURP

Require: x ∈ Rd ,n ∈ N,w ∈ N, and p ∈ N
1: Set Σ←{σ : [d]→ [d]|σ is bijective}
2: for i ∈ [n] do
3: Set σ (i, j) $←− Σ for j ∈ [p]

4: Set αi← argmaxk∈[w]

(
∏

p
j=1 σ (i, j)(x))

)
k

5: Set R(i)←
{

σ (i,1), · · · ,σ (i,p)
}

6: end for
7: Set R←

{
R(1),R(2), · · · ,R(n)

}
8: Set α ← (α1, · · · ,αn)
9: return (α,R)

B.3 ABH
Recently, another type of LSH was proposed in [7] that is different from IoM. Remark that
we call it Advanced Biohashing (ABH) throughout the main paper because this scheme
is not named by the authors, though its form originates from and revises the weakness of
Biohashing [5]. ABH takes four positive integers, d, p,q, and r, as system parameters.

• Setup, denoted by SABH, is a probabilistic algorithm that outputs a set of matrices R ={
R(1), · · · ,R(pq)

}
such that R(i) ∈ Rr×d for i ∈ [pq]. The row vectors

{
r(i)1 , · · · ,r(i)r

}
of R(i) are independently sampled from N (⃗0, Id).

• Hashing, denoted by HABH, is a deterministic algorithm that takes a real-valued vector
x ∈ Rd and internal parameter R generated by Setup. This algorithm outputs a matrix
A = (α̂ jk) ∈ [2r]p×q from the following process.

1. Set α i = (αi1, · · · ,αir) such that αil = sgn(r(i)l ·x) for i ∈ [pq].

2. Set α ′i to a decimal expression of (αi1αi2 · · ·αir)2.

3. Set j = i (mod p)+1 and k such that i = jp+ k.

4. Set α̂ jk using α ′i for j ∈ [p] and k ∈ [q].

The formal description of HABH is provided in Algorithm 3.
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Algorithm 3 ABH.HABH

Require: x ∈ Rd , p ∈ N, q ∈ N, and r ∈ N
1: Set n← p×q× r
2: for i ∈ [pq] do
3: for j ∈ [r] do
4: Set r(i)j ←N (⃗0, Id)

5: Set αi j← sgn(r(i)j ·x)
6: end for

Set R(i)←
[
r(i)1 || · · · ||r

(i)
r

]T

7: end for
8: Set R←

{
R(1),R(2), · · · ,R(pq)

}
9: Set α ′i as a decimal expression of (αi1αi2 · · · ,αir)2.

10: Set j← i (modp)+1 and k← i− jp
11: Set α̂ jk← α ′i
12: Set A← (α̂i j) ∈ [2r]p×q.
13: return (A,R)

C Reformulation of LSH into LSP

Now we demonstrate that GRP-IoM, URP-IoM, and ABH can be converted to our LSP
notation. We first give an example of how to convert the BioHashing into our LSPs. For a m×
d matrix R whose row vectors are ri, HBH(x;R) = (sgn(ri ·x))i∈[m]. If the ith component of
the hashed value is ai, then we have that ai = sgn(ri ·x). Thus, for PBH

i (x;R) = (−1)aisgn(ri ·
x) for i∈ [m], we obtain HBH(x;R) = (a1, . . . ,am) if and only if PBH

i (x;R)≤ 0 for all i∈ [m].

C.1 GRP-IoM

For a given x ∈ Rd , let HGRP(x;R) = (hGRP(x;R(1)), · · · ,hGRP(x;R(n))). Then, from the
definition of argmax, we obtain an inequality for a ∈ [m].

hGRP(x;R(i)) = a⇔ (r(i)j ·x− r(i)a ·x)≤ 0,∀ j ∈ [m].

Let us define PGRP
j,a (x;R(i)) = sgn(r(i)j · x− r(i)a · x) for j ∈ [m]. From this, we obtain the

following relationship.

hGRP(x;R(i)) = a⇔ PGRP
j,a (x;R(i)) = 0,∀ j ∈ [m].

Thus, by converting each coordinate of HGRP(x;R) to the above relation, we can reformulate
GRP-IoM into our LSP notation. We give a detailed algorithm in Algorithm 4
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Algorithm 4 Convert GRP-IoM to LSP

Require: (α,R)

1: Parse R as
{

R(1), · · · ,R(n)
}

2: Parse α as (α1, · · · ,αn)
3: for i ∈ [n] do

4: Parse R(i) as
[
r(i)1 ∥· · ·∥r

(i)
m

]T

5: for j ∈ [m] do
6: Set k← (i−1)m+ j and a← αi

7: Set function PGRP
k (x;R(i)) = sgn(r(i)j ·x− r(i)a ·x) for some x ∈ Rd

8: end for
9: end for

10: return PGRP =
{
PGRP

1 , · · · ,PGRP
nm
}

C.2 URP-IoM

For convenience, we denote Σ(i) =
{

σ (i, j) : j ∈ [p]
}

. Suppose that x ∈ Rd is given. Let us

denote HURP(x;Σ) = (hURP(x;Σ(1)), · · · ,hURP(x;Σ(n)). For a fixed i ∈ [n]:

hURP(x;Σ
(i)) = a⇔

(
p

∏
j=1

σ
(i, j)(x)

)
t

−

(
p

∏
j=1

σ
(i, j)(x)

)
a

≤ 0,∀t ∈ [w].

In this case, an LSP PURP
t,a for t,a ∈ [w] can be defined as

PURP
t,a (x;Σ

(i)) = sgn

((
p

∏
j=1

σ
(i, j)(x)

)
t

−

(
p

∏
j=1

σ
(i, j)(x)

)
a

)
.

From this, we have

hURP(x;Σ
(i)) = a⇔ PURP

t,a (x;Σ
(i)) = 0,∀t ∈ [w].

Therefore, we conclude that URP-IoM can also be converted to our LSP notation and the
precise algorithm is given in Algorithm 5.
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Algorithm 5 Convert URP-IoM to LSP

Require: (α,R) and w ∈ N
1: Parse R as

{
R(1), · · · ,R(n)

}
2: Parse α as (α1, · · · ,αn)
3: for i ∈ [n] do
4: Parse R(i) as

{
σ (i,1), · · · ,σ (i,p)

}
5: for j ∈ [w] do
6: Set k← (i−1)w+ j and a← αi

7: Set M(·;R(i))←
(

∏
p
m=1 σ (i,m)(·))

)
8: Set PURP

k (·;R(i))← sgn(M(·;R(i)) j−M(·;R(i))a)
9: end for

10: end for
11: return PURP =

{
PURP

1 , · · · ,PURP
nw
}

C.3 ABH
Note that for any x, x̂ ∈ Rd , HABH(x;R) = HABH(x̂;R) if and only if sgn(r(i)j ·x) = sgn(r(i)j ·
x̂),∀i ∈ [pq] and j ∈ [r]. This condition is equivalent to a random projection-based LSH for
n = pqr, i.e., the LSP corresponding to ABH is PABH

i, j (x;R) = sgn(r(i)j · x) Thus, ABH can
be reformulated using our LSP notation, and this is equivalent to BioHashing in the sense of
LSP. The detailed algorithm is given in Algorithm 6.

Algorithm 6 Convert ABH to LSP

Require: (A,R)

1: Parse R as
{

R(1),R(2), · · · ,R(pq)
}

2: Parse A as (α̂i j) ∈ [2r]p×q

3: for i ∈ [p] do
4: for j ∈ [q] do
5: Set l← (i−1)q+ j

6: Parse R(l) as
[
r(l)1 || · · · ||r

(l)
r

]T

7: Convert α̂i j to binary string (αl1αl2 · · ·αlr)2
8: for k ∈ [r] do
9: Set n← (l−1)r+ k and a← αlk

10: Set function PABH
n (x;r(l)k ) = (−1)asgn(r(l)k ·x) for some x ∈ Rd

11: end for
12: end for
13: end for
14: return PABH =

{
PABH

1 , · · · ,PABH
pqr
}
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D Detailed Experimental Settings

In this section, we provide the detailed settings for the experiment reported in the main paper.

D.1 Formal Description of the Evaluation Metrics

Recall that we used the true accept ratio (TAR) and the false accept ratio (FAR) as evalu-
ation metrics for describing the performance of the given biometric authentication system
(Ext,VBA). We give a precise definition for each of them. For simplicity, let us denote D
as the benchmark dataset that consists of pairs of biometrics. We assume that D splits into
Dp and Dn, each of which indicates the set of positive pairs and negative pairs, respectively.
From this, we define the true accept ratio (TAR) and false alarm ratio (FAR) with respect to
the threshold τBA as follows:

TAR(τBA) =
|{(x,y) ∈ Dp : VBA(Ext(x),Ext(y),τBA) = 1}|

|Dp|
,

FAR(τBA) =
|{(x,y) ∈ Dn : VBA(Ext(x),Ext(y),τBA) = 1}|

|Dn|
.

For the performance evaluation of the authentication scheme with BTP (Ext,T,VBTP), we
follow the same definition, except for applying the T to the output Ext and running the VBTP

algorithm within the same randomness that was used for T . If the threshold τBTP for the
BTP is specified to some value, then we will simply denote TAR@FAR.

In addition, we considered two scenarios motivated by [8]: Type-1 attack and Type-2
attack. In the Type-1 attack, the adversary attempts to impersonate the target LSH-based BTP
by reconstructing the biometric from the compromised protected template. To be precise, for
the adversaryA, the target authentication scheme with BTP (Ext,T,VBTP) and the threshold
τBTP, we define ASR1(τBTP) =

|D1(τBTP)|
|D| on the the benchmark dataset D3, where

D1(τBTP) =


x ∈ D :
VBTP(s,T (Ext(x̃);Rx),τBTP) = 1,

where Rx
$←−R, s← T (Ext(x);Rx) and

x̃←A(s,Rx).


for the random sourceR.

On the other hand, the Type-2 attack was designed to consider the scenario that the
adversary attempts to impersonate another system where the identity corresponding to the
compromised template is enrolled with different but the same type of biometrics. To address
the above scenario, we define the Type-2 attack success rate (ASR2) by evaluating the proba-
bility that the adversary succeeds in impersonating the unprotected biometric authentication
system (Ext,VBA) via retrieved biometrics from a stolen protected template. The precise
definition is as follows: under the same notation on defining ASR1 with the threshold τBA

3Here, we consider D as the set of biometrics, rather than the set of pairs of them.
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for unprotected biometric authentication system, ASR2(τ) =
|D2(τBA)|
|Dp| , where

D2(τBA) =


(x,y) ∈ Dp :
VBA(Ext(x),Ext(ỹ),τBA) = 1,

where Ry
$←−R, s← T (Ext(y);Ry) and

ỹ←A(s,Ry).

 .

D.2 Implementation of Target LSHs
We selected three well-known proposals, GRP-IoM, URP-IoM [6], and ABH [7], as trans-
formation algorithms. Each algorithm is implemented by following Algorithm 1-3 provided
in Section B4. We tested each LSH-based BTP on various parameter settings, and the result
is present in the Table 1. We selected the setting that yields the best benchmark result on
each BTP and the precise parameter settings are as follows: (n,m) = (300,16) for GRP-
IoM, (n,w, p) = (600,100,2) for URP-IoM, and (p,q,r) = (50,60,2) for ABH. For each
setting, we obtain the verification thresholds τGRP = 0.137, τURP = 0.038 and τABH = 0.7,
respectively.

(n,m) GRP-IoM (n,w, p) URP-IoM
(100,16) 99.00%@3e-3 (500,100,2) 98.67%@1e-3
(200,16) 99.47%@2e-3 (600,100,2) 99.03%@7e-4
(300,16) 99.63%@3e-4 (600,100,3) 98.73%@3e-3
(400,16) 99.60%@1e-3 (700,100,2) 99.27%@4e-3

(p,q) r = 2 r = 3 r = 4
(50, 40) 99.63%@3e-4 99.67%@3e-4 99.67%@3e-4
(50, 60) 99.70%@1e-3 99.67%@1e-3 99.57%@0
(50, 80) 99.67%@1e-3 99.67%@1e-3 99.70%@1e-3

(50, 100) 99.63%@3e-4 99.70%@1e-3 99.63%@0

Table 1: The TAR@FAR evaluation results for GRP-IoM, URP-IoM (left) and ABH (right) with vari-
ous parameters. The setting that gives the best benchmark performance is emphasized in bold.

D.3 Implementation of Each Attack Method
Proposed Method For the choice of a root finding algorithm, we adopted the conjugate
gradient method-based algorithm [9] for GRP-IoM and ABH, and quasi-Newton’s method
for URP-IoM. For URP-IoM, we limited the maximum update step to 50 for the balance of
attack performance and execution time. Note that other sophisticated root-finding algorithms
may be exploited, but in our experiment, we utilized such basic algorithms to validate our
attack methodology.

Genetic Algorithm-based Method [2] On the implementation of the genetic algorithm,
we conduct the following procedure with the setting. The algorithm starts by sampling initial
vectors from the standard normal distribution. We select the size of the group per generation
as 200, and the selection and mutation processes are followed. We set the objective function
to be maximized as the matching score between the hashed value in the target template and
the hashed value that was made from vectors in the current generation. For the mutation
phase, we add noise vectors sampled from a normal distribution with a mean of 0 and a
standard deviation of 0.1. The total number of iterations is set to 1,000.

Optimization-based Method [3] We applied the same technique to attack URP-IoM as in-
troduced in their original paper. In addition, when solving the linear programming problem,
we used the CVXOPT [1] library as [3] did. We conducted the same analysis as previous

4For more details of our implementation, please refer to our code at github.
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attack methods we investigated in the same experimental setting as ours. During the ex-
periment, we observed that the algorithm failed to solve the given constraint system for the
following reasons: (1) the corresponding Karush-Kuhn-Tucker matrix becomes singular dur-
ing optimization, or (2) the corresponding constraint system does not have a sufficient rank.
For the former case, the algorithm returns some solutions, whereas the latter case returns
nothing. Empirically speaking, the latter case happens in nearly 50% of the total attempts.
We only analyzed the result when the second case did not occur.
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