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1 Architectural details
We use a multiresolution hash grid with 16 levels with number of entries ranging from 4096
to 524288. The features encoded at each resolution level have a dimensionality of 2, leading
to a total encoding size of 32. For the MLPs, we follow the architecture used in [2], which
consists of two concatenated MLPs:

1. The density MLP - which has one hidden layer of size 64 with ReLu activations - maps
the encodings to 16 output values, the first of which is the log-density.

2. The color MLP - which has two hidden layers of size 64 with ReLu activations - then
maps the outputs of the density MLP and the viewing direction to the color.

2 Pose inference details
The optimisation strategy used differs slightly on a per-parameter basis. Nevertheless, the
core structure of all parameter optimisations is the same: an exponentially decayed learning
rate with which the updates are computed using Adam [1]. Additionally, in order to counter-
act numerical instability, we set undefined values to zero and clip the gradients to 1 at every
time step of the optimisation for all parameters.
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The formula for computing the exponentially decayed learning rates αt at timestep t is:

αt = α0 ∗ r(t/s)

In order to compute the parameter parameter updates ut at timestep t with Adam[1].

mt ← β1 ·mt−1 +(1−β1) ·gt

vt ← β2 · vt−1 +(1−β2) ·gt
2

m̂t ← mt/(1−β
t
1)

v̂t ← vt/(1−β
t
2)

ut ← αt · m̂t/
(√

v̂t + ε̄ + ε

)
St ← (mt ,vt).

Detailed per parameter optimisation settings of the optimisation are detailed in Table 1.

3 Motivation of the edge sampling strategy
Our edge sampling strategy is motivated by the fact that the gradients are located around the
edges and textured areas of the object. Figure 1 provides a visualization of a snapshot of
the location of the gradient for our method. For all parameters, the learning signal is located
around edges and texture in the current position of the object in the optimisation (which
can be seen most clearly for the rotation). Nevertheless, despite the apparent simplicity of
the visualisation, analyzing the learning behaviour of the method is intricate. One factor
that contributes to this is that there seems to be gradients around the edges that sent the
optimisation in the wrong direction (as can be seen for the translation parameters in Figure
1). We attribute convergence despite these factors to higher order effects of the optimisation.

4 Backbone and convergence speed
The convergence speed of the method at pose inference time results from its raw speed in
terms of optimisation steps per second and how much these steps can contribute to retrieving
the correct pose. Without reparametrisation, using Instant NGP as a backbone for iNeRF[3]
does not lead to good pose optimisation performance. The screw axis variant of our method
follows iNeRF[3] with an Instant NGP backbone and its performance can be compared to
the results for iNeRF with random sampling as reported in iNeRF[3]. Since both of these
methods use random sampling and run on the same hardware, it seems that even though the
Instant NGP backbone allows our method to process larger batches faster while running on
the same hardware as iNeRF[3], it is only in combination with reparametrising that we reach
similar accuracy (see Table 1).
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Figure 1: Visualisation of the error correction per pixel induced by the gradients and
their distribution.
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Parameter Configuration Setting

Scale Learning rate schedule Exponential decay
Initial value (α0) 0.01

Transition steps (s) 100
Decay rate (r) 0.8

Optimisation algorithm Adam[1]
First moment decay rate (β1) 0.9

Second moment decay rate (β2) 0.99
Epsilon (ε) 1e-8

Epsilon root (ε̄) 0.0
Initial estimate of the first moment (m0) 0.0

Initial estimate of the second moment (v0) 0.0

Pixel translation Learning rate schedule Exponential decay
Initial value (α0) 0.01

Transition steps (s) 100
Decay rate (r) 0.8

Optimisation algorithm Adam[1]
First moment decay rate (β1) 0.9

Second moment decay rate (β2) 0.99
Epsilon (ε) 1e-8

Epsilon root (ε̄) 0.0
Initial estimate of the first moment (m0) 0.0

Initial estimate of the second moment (v0) 0.0
Additional aspects The updates are scaled by 300

Rotation Learning rate schedule Exponential decay
Initial value (α0) 0.005

Transition steps (s) 100
Decay rate (r) 0.8

Optimisation algorithm Adam[1]
First moment decay rate (β1) 0.9

Second moment decay rate (β2) 0.99
Epsilon (ε) 1e-8

Epsilon root (ε̄) 0.0
Initial estimate of the first moment (m0) 0.0

Initial estimate of the second moment (v0) 0.0

Table 1: Detailed overview of the per parameter optimisation configuration for the pose
inference. Note that the only difference between the parameter optimisations are that we use
a scaling operation for the translation optimisation and a different initial learning rate for the
rotation optimisation. The settings reported in this table were used for all the experiments.
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Inference (s)
Rotation

error < 5◦
Translation

error < 0.02 Units

iNeRF 50 s ≤ 0.7 ≤ 0.7∗

Ours
(screw axis) 4.4 s 0.44 0.2

Ours
(reparametrised) 4.4s 0.79 0.76

Table 2: The translation error metric reported for iNeRF is a loose upper bound to our trans-
lation error due to the larger error range used (if the meter unit reported in iNeRF corresponds
to the COLMAP Unit retrieved for our scene).


