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S1 Experimental Settings

S1.1 Test Settings
This section describes the test setting configuration we employed in our overall approach.
With test images of the datasets (WFLW [1], 300W [28], COFW [5], AFLW [19]), no aug-
mentation - standard augmentations nor Fiducial Focus Augmentation (FiFA) - is utilized
at test/inference time. With the absence of different augmented views of the input test im-
ages, there is no requirement for the Siamese framework (whose purpose is to learn a good
feature extractor during training). Consequently, the standalone Transformer + CNN-based
backbone is used for testing.

S1.2 Dataset Descriptions
The proposed method was studied on benchmark datasets, namely WFLW [1], 300W [28],
COFW [5] and AFLW [19]. Details of these datasets are described below.

Caltech Occluded Faces in-the-Wild (COFW) [5] is a dataset having challenging images
with extreme pose variations and occlusion. The dataset comprises 1,345 training and 507
testing images annotated with 29 landmarks.

300 Faces in-the-Wild (300W) [28] is a 68-landmark dataset containing the subsets: AFW
[R1], LFPW [R2], HELEN [R3], and XM2VTS [R4] with iBUG as an additional dataset.
Following common protocol as in earlier work, the provided training splits of HELEN,
LFPW and the full set of AFW are used for training, while the test splits of HELEN, LFPW
and the iBUG dataset are used for testing. The dataset consists of 3,148 images for train-
ing and 689 for testing, containing 554 samples for the common and 135 images for the
challenging subsets.

Annotated Facial Landmarks in-the-Wild (AFLW) [19] provides a large-scale collection
of annotated facial images sourced from Flickr, exhibiting a large variety of appearance
features such as pose, expression, ethnicity, age and gender, alongside general imaging and
environmental conditions. The dataset encompasses approximately 25k faces with up to 21
landmarks identified per image.

Wider Facial Landmarks in-the-Wild (WFLW) [1], a recent dataset comprising 98 land-
marks, features 7,500 training and 2,500 testing images. In addition to its dense manual an-
notations, this dataset also incorporates attribute annotations, divided into six subsets: pose,
occlusion, expression, blur, make-up, and illumination.

S1.3 Descriptions of Evaluation Metrics
We used different metrics to assess the efficacy of the proposed method in this work. Details
of these metrics are described below.
Normalized Mean Error (NME) is an extensively used metric to assess the efficacy of a
facial landmark localization algorithm. Here, the pixel-wise absolute distance is normalized
over a distance that accounts for face size. Then the outcome is obtained by calculating the
error of each key point and by averaging it. The NME can be defined mathematically as:

NME(P, P̄) =
1
L

L

∑
l=1

||pl− p̄l ||2
d

, (9)
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where P, P̄ denotes the ground truth coordinates of all points and predicted ones for a face
image. L is the total number of keypoints, and both pl , p̄l are 2-dimensional vectors pre-
senting the x-y coordinates of the ith keypoint. d is the normalization factor denoting the
inter-pupil distance or inter-ocular distance (NMEic). The latter could be a distance between
the inner corners of the eyes (not commonly used) or the outer corner of the eyes, which is
commonly used and used also in our evaluation. Another variant, NMEbox is computed as
the geometric mean of the ground truth bounding box, where NMEbox =

√
wbbox ·hbbox and

NMEdiag is defined as the diagonal of the bounding box. Following common practice, we
use the NMEic for the 300W, WFLW and COFW dataset, while the NMEbox and NMEdiag
for the AFLW dataset. Here, lower NME indicates better performance.
Failure Rate (FR) offers further comprehension in the configuration of a facial landmark
detection algorithm. The NME of each image is evaluated by setting a threshold. Images
with an NME surpassing the threshold are classified as failures. The FR is then deduced by
evaluating the rate of failures in a given testset. A lower FR indicates better performance.
For e.g., FR10

ic is computed when corresponding NMEic is calculated as inter-ocular distance
and the threshold is set to 10%.
Area Under the Curve (AUC) is another metric widely used by researchers for facial land-
mark detection. It is obtained through the Cumulative Errors Distribution (CED) curve, plot-
ted from zero to the FR threshold. It results in a non-negative curve whose area is computed
to yield the AUC value. An increase in AUC indicates an improvement in the accuracy of
predictions for more samples in the test set. AUC10

ic is computed when corresponding FR10
ic

is calculated on the basis of inter-ocular distance. We used AUCbox as a metric for the AFLW
dataset, where the corresponding FR is calculated on the basis of NMEbox where NME is
computed as the geometric mean of the ground truth bounding box.

S2 Ablation Studies & Analysis

In addition to the ablation studies outlined in the main manuscript, here we present addi-
tional ablation experiments to study the efficacy of the proposed method. These experiments
involve increasing fiducial patch size, analyzing the anti-aliased hourglass module as well as
studying the use of different backbone networks.

S2.1 Increasing Fiducial Patch Size

In order to study whether decreasing the fiducial path size over the training iterations in FiFA
is the appropriate strategy, we performed experiments reversing the operation to see its effect
on overall detection performance. This process, which we term Reversed Fiducial Focus
Augmentation (RFiFA), involves commencing network training without the use of patches
for a specific epoch interval, before gradually introducing 1×1 patches over the landmarks
and scaling up to n× n patches for each subsequent epoch interval. Through our analysis,
as presented in Table S1, we determined that an ending patch size of 5×5 yields an NMEic
of 3.05. The performance degrades if the ending patch size is either increased or decreased.
However, our original proposed FiFA, which starts with a 5× 5 patch size and gradually
reduces it until it is removed from face images, yields the best NMEic of 2.96, validating the
proposed FiFA strategy.



PURBAYAN ET AL.: FIDUCIAL FOCUS AUGMENTATION FOR LANDMARK DETECTION 17

Table S1: Effect of patch sizes in FiFA on COFW.
FiFA patch progression NMEic(%) ↓

no patch→ 1×1→ · · · → 3×3 3.11
no patch→ 1×1→ · · · → 4×4 3.08
no patch→ 1×1→ · · · → 5×5 3.05
no patch→ 1×1→ · · · → 6×6 3.07
no patch→ 1×1→ · · · → 7×7 3.09

5×5→ · · · → 1×1→ no patch (Proposed) 2.96

Table S2: Effect of different backbone
networks in FiFA on COFW.

Backbone network NMEic(%)↓
ResNet-50 [13] 4.02
HRNet [35] 3.31
ViT-B/16 [45] 3.11

Table S3: Effect of hourglass components in FiFA on
COFW.

Method NMEic(%)↓
Baseline 3.11
+ CNN-based hourglass 3.09
+ anti-aliased CNN-based hourglass 3.07

S2.2 Effect of Different Backbone Networks
In our proposed framework, we choose the base variant of Vision Transformer (i.e., ViT-
B/16) as our backbone and made necessary modifications to enhance detection performance.
To validate our approach, we conducted several experiments by integrating other CNN-based
backbones, such as ResNet-50 and HRNet, into our framework. The outcomes of these
experiments are presented in Table S2, where it is evident that ViT-B/16 outperforms all
other backbones.

S2.3 Effect of Hourglass Components
To address the translation variance of CNNs and prevent the loss of structural information,
we integrated the anti-aliasing CNN-based hourglass module inside the ViT. To evaluate the
efficacy of this anti-aliasing component, we carried out experiments studying the perfor-
mance of the hourglass network with and without anti-aliased CNNs. The results obtained
from these experiments are shown in Table S3 which demonstrates that the anti-aliased hour-
glass outperforms the simple hourglass model.

S2.4 Effect of loss functions
In the main paper, ablation analysis is presented in Table 6 to compare different loss func-
tions. Additionally, in Figure S1, we present different loss curves for further analysis. Fig-
ure S1(a) shows the plots for DCCA, L1 and L2 losses obtained from two representations
of Siamese network. From figure, we can see that the DCCA loss converges faster than L1
and L2 losses. Similarly, Figure S1(b) provides the plots when we replace L1 loss between
actual and predicted landmark by DCCA and L2 losses. One can clearly see that the L1 loss
converges faster than DCCA and L2 losses. These results indicate that in both the scenarios,
combination of L1 and DCCA loss leads to faster convergence.

S3 Experimental Results
In addition to the experimental analysis presented in the main manuscript, we elaborate on
additional experimental results herein. We include an analysis of the AUC metric on the
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(a) DCCA loss between two representations of
Siamese network replaced by L1 and L2 losses. Fur-
thermore, L1 is also employed as a loss between ac-
tual and predicted landmark.

(b) L1 loss between actual and predicted landmarks
replaced by DCCA and L2 losses. Furthermore,
DCCA is also employed as a loss between two rep-
resentations of Siamese network.

Figure S1: Comparison between loss functions.

Table S4: Comparison against the state-of-the-art on WFLW testset. Best result is in bold and second
best result is underlined.

Metric Models Remarks Fullset Subset
Pose Expression Illumination Make Up Occlusion Blur

AUC10
ic (%) ↑

FaRL [45] CVPR22 0.6116 — — — — — —
ADNet [15] ICCV21 0.6002 0.3441 0.5234 0.5805 0.6007 0.5295 0.5480
SH-FAN [4] BMVC21 0.6310 — — — — — —
PropNet [14] CVPR20 0.6158 0.3823 0.6281 0.6164 0.6389 0.5721 0.5836
HIH [20] ICCVW21 0.6050 0.3580 0.6010 0.6130 0.6180 0.5390 0.5610
SLPT [40] CVPR22 0.5950 0.3480 0.5740 0.6010 0.6050 0.5150 0.5350
DTLD [21] CVPR22 — — — — — — —
PicassoNet [38] TNNLS22 0.5540 0.2550 0.5100 0.5540 0.5560 0.4600 0.4860
FiFA (Ours) — 0.6178 0.3682 0.6024 0.6219 0.6255 0.5430 0.5617

WFLW testing dataset through a comparison with state-of-the-art (SOTA) methods, qualita-
tive analysis on 300W, COFW, AFLW datasets, and examples of some failure cases on the
test sets.

S3.1 AUC10
ic Analysis on WFLW Dataset

In this study, we compare the proposed method against state-of-the-art methods in terms
of AUC10

ic for the WFLW test set and its subsets, where a higher AUC10
ic indicates better

landmark detection performance. Table S4 reveals that while we attain the second-highest
AUC10

ic for the Fullset, we lag marginally behind [14] for the Pose, Expression, Make Up,
Occlusion, and Blur subsets. However, for the Illumination subset, we achieve the highest
AUC10

ic among other SOTA methods. This signifies that we can predict facial landmarks in a
larger fraction of images in the WFLW test set.

S3.2 Additional Qualitative Results

In the main manuscript, we presented a qualitative analysis of the WFLW dataset in com-
parison with the state-of-the-art method [45]. We herein show qualitative results on other
test sets from 300W, COFW and AFLW datasets and compare them with [45]. Our observa-
tions, as depicted in Figure S2, indicate that our method outperforms the SOTA approach by
delivering more accurate results, particularly in challenging scenarios.

Citation
Citation
{Zheng, Yang, Zhang, Bao, Chen, Huang, Yuan, Chen, Zeng, and Wen} 2022

Citation
Citation
{Huang, Yang, Li, Kim, and Wei} 2021

Citation
Citation
{Bulat, Sanchez, and Tzimiropoulos} 2021

Citation
Citation
{Huang, Deng, Shen, Zhang, and Ye} 2020

Citation
Citation
{Lan, Hu, Chen, Xue, and Cheng} 2021

Citation
Citation
{Xia, Qu, Huang, Zhang, Wang, and Xu} 2022

Citation
Citation
{Li, Guo, Rhee, Han, and Han} 2022

Citation
Citation
{Wen, Ding, Yao, Wang, and Qian} 2022

Citation
Citation
{Huang, Deng, Shen, Zhang, and Ye} 2020

Citation
Citation
{Zheng, Yang, Zhang, Bao, Chen, Huang, Yuan, Chen, Zeng, and Wen} 2022

Citation
Citation
{Zheng, Yang, Zhang, Bao, Chen, Huang, Yuan, Chen, Zeng, and Wen} 2022



PURBAYAN ET AL.: FIDUCIAL FOCUS AUGMENTATION FOR LANDMARK DETECTION 19

(a) 300W

(b) COFW

(c) AFLW

Figure S2: Qualitative results on 300W, COFW and AFLW testset. Landmarks shown in green are
produced by our method, while the ones in red by the SOTA approach [45]. Zoom-in for better view.

S3.3 Failure Case Analysis

For completeness of analysis, we additionally present a summary of failure cases of our
model, which can promote future work in improving our method. Although our model shows
a strong superiority in point of landmark detection, it can be weak on facial images with
strong occlusions, particularly those obscured by others, as depicted in Figure S3. Specifi-
cally, our model may encounter failure under the following conditions: 1) when challenges
such as blurring or occlusion result in significant uncertainty in face-bound inference, and
2) when the face to be aligned is covered by another face, leading to difficulties in distin-
guishing the target character and resulting in substantial errors. Additionally, ambiguity in
landmark annotations can negatively impact the model’s performance, particularly for land-
marks located at face boundaries. As a potential solution to these limitations, we recommend
exploring improved utilization of connections between landmarks to infer the invisible part.
This avenue for improvement provides scope for future work.
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Figure S3: Examples of failure cases on WFLW, 300W, COFW and AFLW datasets. Blue de-
notes the ground truth and green represents our predictions. Combinations of low-resolution
images, extreme poses, partly covered and overlapping faces make up the majority of failure
cases. Zoom-in for better view.
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