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1 Datasets
The experimental setup in this work utilizes three publicly available histopathological datasets:
Camelyon16 [1], The Cancer Genome Atlas (TCGA) Breast Invasive Carcinoma (BRCA)
[13], and the TCGA Urothelial Bladder Carcinoma (BLCA) [11]. This section highlights the
purposes of each dataset, the curation, and the pre-processing procedure. As mentioned in the
main part of this work, all patches are extracted at 20× magnification in a non-overlapping
manner with a size of 256×256.

1.1 Camelyon16

The Camelyon16 dataset [1] consists of 399 hematoxylin and eosin (H&E) stained lymph
node sections, scanned and stored as whole-slide images (WSIs). Each slide is fully anno-
tated and permits pixel-wise detection of breast cancer metastasis. We focus on slide-level
cancer classification in our weakly supervised setup and ignore the pixel-wise annotations.
The WSIs are labeled as "tumor" as soon as they incorporate annotated cancerous regions,
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otherwise they are "normal". We follow the official dataset split with 270 training samples
(110 tumor, 160 normal) and 129 test samples (49 tumor, 80 normal). During pre-processing,
we combine threshold-based filtering [9] with a pre-trained U-Net [10] for tissue segmenta-
tion, yielding about 11,500 patches per slide.

1.2 TCGA-BRCA
The TCGA-BRCA [13] contains 1,133 diagnostics digital H&E slides of invasive breast can-
cer and is made available by the National Cancer Institute (NCI) Genomic Data Commons
(GDC) [4]. The dataset covers 15 histological types and can be augmented with additional
modalities such as genomic data. Following the experimental design of Chen et al. [3], we
focus on classifying the two most frequent histological types of breast cancer: invasive ductal
carcinoma (IDC) and invasive lobular carcinoma (ILC). We apply a stratified data split with
a ratio of 80:20 (training:test) on the patient-level, which leads to 698 training samples (578
IDC, 120 ILC) and 177 test samples (148 IDC, 29 ILC). As the WSIs do not contain a 20×
magnification, we extract patches of size 512 at magnification 40× and apply a downsam-
pling operation of factor 2 to acquire patches of size 256×256. The remaining steps during
pre-processing are the same as described in Section 1.1, leading to roughly 11,000 patches
per slide.

1.3 TCGA-BLCA
The TCGA-BLCA dataset [11] is also published by the NCI GDC [4] and comprises 449 la-
beled diagnostic H&E WSIs of muscle-invasive bladder cancer (MIBC). In our experiments,
we intend to classify the slides into two histological types: papillary MIBC and non-papillary
MIBC. We exploit the same procedure as in Section 1.2 and apply a patient-level data split
with 80% training cases (351 WSIs) and 20% test cases (98 WSIs). After pre-processing,
we acquire approximately 16,500 patches per slide.

2 Implementation Details
To train the DQ-MIL architecture, a self-distillation loss LSD, inspired by Zhang et al.
[14, 15], is utilized and combined with a Lookahead RAdam optimizer [8, 16]. For all
experiments, a learning rate of 2×10−4 and a weight decay of 10−5 is used [12]. The mini-
batch during training is set to one bag-of-instances (1 WSI). Following Jaegle et al. [6], a
truncated normal distribution with µ = 0, σ = 0.02, and truncation bounds of [-2, 2] is used
to randomly initialize the latent representations (Q1, Q2). The hyper-parameter setting of the
DQ-MIL architecture used for the experiments, results in a computational complexity of 25
GFLOPS, which is decreased compared to TransMil [12] with 40 GFLOPS and DS MIL [7]
with 45 GFLOPS.

3 Ablation Study

3.1 Temperature-Based Instance Masking
Motivated by the results of the Iterative Patch Selection (IPS) module [2], which condenses
a bag into its M most salient instances, we conduct an ablation study to explore the potential
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of temperature τ for implicit instance masking. As shown in the main section of this work,
the general attention operation, based on queries Q, keys K, values V, and temperature τ ,
can be expressed as:

Attention(Q,K,V) = so f tmax
(

QKT

τ

)
V. (1)

In standard self-attention, τ serves to decouple the attention scores from the inner channel
dimension dk. Therefore, parameter τ is given by τ =

√
dk. In contrast to Bergner et al. [2],

our idea is not to reduce the computational burden. We aim to sharpen the training signal by
implicitly masking out less significant instances. Therefore, we decrease the temperature τ

to collapse the probability distribution to the most essential instances. To explore the effect
of this approach, we conducted experiments with various values for τ . The results are shown
in Table 1.

Temperature Camelyon16 TCGA-BRCA TCGA-BLCA

AUC Accuracy AUC Accuracy AUC Accuracy

τ =
√

dk = 8 0.9594 0.9457 0.9441 0.9266 0.8462 0.9184
τ = 1 0.9487 0.9457 0.9369 0.9039 0.8452 0.8061
τ = 1/8 0.9556 0.9380 0.9306 0.8249 0.8081 0.7959
τ = 1/16 0.9651 0.9457 0.9359 0.8531 0.8027 0.9184

Table 1: Comparison of different temperature values, evaluated with a fixed DQ-MIL-SD
aggregation model.

Although we achieve an improvement of the AUC metric on Camelyon16, which resonates
with the insights from Bergner et al. [2], the potential of implicit instance selection using
temperature τ is limited. Collapsing the probability distributions by decreasing τ seems
only beneficial for unbalanced bags-of-instances, given in the Camelyon16 dataset. For
other tasks, such as histological subtyping, temperature-based instance masking may even
be detrimental to the overall performance. An alternative approach could be to convert the
hyperparameter τ into a trainable parameter [5].
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