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Landmark detector pre-training. For a fair comparison and following [9], the landmark
detector Ψ in our method, baseline [4], and others with similar pipeline [9] is initialised
with the same checkpoint, pre-trained on MPII. Similarly, the VGG-16 network (in the
reconstructor) is pre-trained on ImageNet for our approach, baseline [4] and [9].
Image reconstruction network. For image reconstruction, we adapt from architectures
typically used for image-to-image translation [3], face synthesis [2, 7] and neural transfer
[5]. We provide it with an image y′ of resolution 128× 128, where y′ is the deformed
version of original image y. We create this deformed image y′ by applying random similarity
transformations over image y. These transformations include scaling, rotation and translation.
We then proceed by first applying two downsampling convolutions that bring the number of
features to 256, and then concatenate the adaptive heatmaps with the downsampled image
tensor to pass it through a set of 6 residual blocks. Finally, we apply two spatial upsampling
convolutions to restore the original image resolution.
Evaluation metrics. We use forward error [8, 9], backward error [9], and Normalised Mean-
squared Error (NME), normalized by inter-ocular distance to report the performance. We
train a linear regressor, that maps the discovered landmarks into the ground truth annotations,
using a variable number of images in the training set. The learned regressor is tested on the
corresponding test partition. Following [8, 9], we refer to this as forward error. In addition, [9]
also introduced a backward error, that trains a regressor in an opposite direction. It maps the
ground truth annotations into the discovered landmarks. We use Normalised Mean-squared
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Datasets AFLW MAFL
Methods F B F B
Sanchez[9] 6.69 10.02 3.99 3.97
Sanchez[9]+Ours 6.29 8.44 3.56 3.76

Table 1: Our method is capable of boosting the performance of another competitive baseline [9].

Figure 1: Cumulative PNSR and SSIM [10] over training (on Cats Head) to compare the reconstruction
quality between our method and the baseline [4].

Error (NME), normalized by inter-ocular distance to report the performance.
More qualitative results. Figs. 2 and 3 draw additional qualitative comparisons accompany-
ing Sec. 4 (in main paper) on AFLW [6] and MAFL [14] datasets. We see that our method
is capable of discovering more semantically relevant landmarks that also capture improved
correspondence across different poses and expressions. In contrast, other methods often detect
semantically irrelevant landmarks that also lack appropriate correspondence across images.
Fig. 4 shows qualitative comparisons in addition to Sec. 4 (in main paper) on LS3D [1] dataset.
We can observe that, in contrast to other methods, our approach is able to discover more
semantically meaningful under large pose and expression variations and other challenging
factors such as occlusions.
Figs. 5 and 6 display additional qualitative comparisons on Cats Head [13] and Shoes [11, 12]
datasets, respectively. In Cats Head dataset, in contrast to others, our method recovers
semantically richer landmarks (e.g., around eyes and nose) under different appearance, pose
and lighting variations.
With another baseline. We chose another competitive baseline using same loss function [9]
to evaluate the effectiveness of our proposed consistency-guided bottleneck (CGB). our CGB,
also improves [9] in both forward and backward errors (see Tab. 1).
Reconstruction quality comparison. Fig. 1 shows that, compared to baseline [4], our CGB
allows improved reconstruction of the input image.
Varying the range of σ . We study the impact on the performance upon varying the range
of σ , Eq.(4) main paper, to which it is mapped (Table 3). Constraining the mapped range
between [0.2,5] provides improved results compared to the relatively bigger range of [0.2,10].
A much bigger range probably over dilates σ , which could likely degrade the reconstruction
ability.
Different manifestations of σ . We report performance with different manifestations of σ :
fixed, randomly sampled, and the modulated via landmark consistency (Table 2). Modulated
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Method NME%

Fixed σ [4] 3.99
Random σ 4.21
σ (Ours) 3.50

Table 2: NME% (forward)
with different manifesta-
tions of σ .

σ NME%

[0.2, 5] 3.50
[0.2, 10] 3.61

Table 3: NME%
(forward) with
varying the range
of σ mapping.

PSupdate NME%

5 3.50
10 3.86
20 3.70
40 3.36

Table 4: PSupdate variations.

σ generally provides improved performance among others, thereby showing the effectiveness
of favouring consistent landmarks over noisy counterparts during training.
Varying pseudo-supervision update frequency. We analyze performance upon varying the
pseudo-supervision update frequency PSupdate (Table 4).
Limitations. Like other SOTA methods ([4], [9]), our approach also depends on a pre-trained
model trained in a supervised way on an object category. Further, the complexity of KNN
affinity graph scales rapidly with more data points. As such, this allows learning some
structured representation, presumably shared across different object categories, and hence it
could be beneficial for unsupervised landmark discovery task.
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Figure 2: Additional qualitative comparisons on AFLW with Jakab et al. [4](Baseline), and
Sanchez et al. [9].
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Figure 3: Additional qualitative comparisons on MAFL with Jakab et al. [4](Baseline), and
Sanchez et al. [9].
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Figure 4: Additional qualitative comparisons on LS3D with Jakab et al. [4](Baseline), and
Sanchez et al. [9].
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Figure 5: Additional qualitative comparisons on Cats Head with Jakab et al. [4](Baseline),
and Sanchez et al. [9].
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Figure 6: Additional qualitative comparisons on Shoes with Jakab et al. [4](Baseline), and
Sanchez et al. [9].
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