READMem: Robust Embedding Association for a Diverse Memory in Unconstrained Video Object Segmentation

Fraunhofer

<u>Stéphane Vujasinović</u>¹, Sebastian Bullinger¹, Stefan Becker¹, Norbert Scherer-Negenborn¹, Michael Arens¹ and Rainer Stiefelhagen²

¹Fraunhofer IOSB^{*} (Ettlingen, Germany) ²Karlsruhe Institute of Technology (KIT) (Karlsruhe, Germany)

IOSB

TL;DR

Task: Semi-automatic Video Object Segmentation (sVOS).

Handle **Objective:** unconstrained videos (arbitrary frame rate, length, object motion and camera motion).

Approach: Increase the inter-frame diversity within the memory.

Implementation: An extension to manage the memory of STM-like networks [1] available at https://github.com/Vujas-Eteph/READMem

BMVC

2023

Scan me

Problem & Motivation

Existing sVOS methods are tailored for shortvideo object segmentation:

- Rely on an ever-expanding memory.
- Define a dataset-specific sampling interval s_r , non-generalizable to unseen data.

DAVIS Dataset [4] LV1 Dataset [3]

Contributions

READMem extends any sVOS method to deal with unconstrained sequences.

Seamless integration without re-training or fine-tuning.

Generalizable sampling interval s_r (no need to finetune on the validation set).

Automatic memory embeddings diversity estimation via *Diversification of* Memory Embeddings (DME).

Translation and scale invariant embedding through **E**mbedding association Robust Association (REA).

Process: Memory keys updated if diversity increases.

Robust Embedding Association (REA):

- Motivation: Dampen translation and scale variations when computing the similarity.
- Concept: Projects the memory key embeddings \mathbf{k}_n^m to the query's ($\mathbf{k}^{q,m}$) temporal frame of reference by:

Quantitative Results

Results on Long-Video [3] and DAVIS [4] with $s_r = 1$.

\Box Performance variation when varying s_r on LV1 [3].

Configuration	$\mathcal{J}\&\mathcal{F}_{\mathrm{LV1}}$	$\mathcal{J}\&\mathcal{F}_{\mathrm{D17}}$
MiVOS [5] + adj. frame (baseline)	64.3	84.3
MiVOS [5] + DME (ours)	$69.5^{15.2}$	$81.3^{\downarrow 3.0}$
MiVOS [5] + DME + LSB (ours)	$75.0^{\uparrow 10.7}$	$81.3^{\downarrow 3.0}$
MiVOS [5] + DME + LSB + adj. frame (ours)	$77.4^{\uparrow 13.1}$	$84.3^{\uparrow 0.0}$
MiVOS [5] + DME + LSB + adj. frame + REA (ours)	86.0 ^{↑21.7}	84.6 ^{↑0.3}

[1] Seoung Wug Oh, et al. Video Object Segmentation using Space-Time Memory Networks. ICCV, 2019. [2] Tianfei Zhou, et al. A Survey on Deep Learning Technique for Video Segmentation. TPAMI, 2023. [3] Yongqing Liang, et al. Video Object Segmentation with Adaptive Feature Bank and Uncertain-Region Refinement. NeurIPS, 2020.

[4] Jordi Pont-Tuset, et al. The 2017 DAVIS Challenge on Video Object Segmentation. arXiv, 2017.

[5] Ho Kei Cheng, et al. Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion. CVPR, 2021.

6] Ho Kei Cheng, et al. Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation. NeurIPS, 2021.

[7] Yong Liu, Ra et al. Learning Quality-Aware Dynamic Memory for Video Object Segmentation. ECCV, 2022.

Contact: stephane.vujasinovic@iosb.fraunhofer.de