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In this supplementary document, we provide additional experiments, visualizations and
insights.

A Additional Qualitative Results on the Long-time Video
(LV1 [8]) Dataset

We display qualitative results for the READMem variations of MiVOS [2], STCN [3] and
QDMN [9] along with their baseline on the LV1 [8] dataset. We use the same settings
as described in Section 4 (refer to quantitative results). We also provide the results for
XMem [1], which represents the state-of-the-art.

Figures S1, S2 and S3 displays the results for the blueboy, dressage and rat sequences
in LV1 [8] respectively when using s, = 10, while Figures S4, S5 and S6 display the re-
sults for s, = 1. The estimated segmentation mask of the baselines (MiVOS [2], STCN [3],
and QDMN [9]) are visualized in red, while the results of the READMem-based variations
(READMem with a baseline) are highlighted in blue. The intersection between the predic-
tion of a baseline and its corresponding READMem variation is depicted in turquoise. The
ground-truth contours are highlighted in yellow. We depict XMem [1] results in purple.
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A.1 Qualitative Results on LV1 [8] with s, = 10

MiVOS [2] vs.
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STCN [3] vs.
READMem-STCN

QDMN [9] vs.
READMem-QDMN

XMem [1]

Figure S1: Results on the blueboy sequence of LV1 [8] with s, = 10. We depict the results
of: the baselines in red, the READMem variations in blue, the intersection between both in
turquoise, the ground-truth contours in yellow and XMem [1] results in purple.
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Figure S2: Results on the dressage sequence of LV1 [8] with s, = 10. We deplct the results
of: the baselines in red, the READMem variations in blue, the intersection between both in
turquoise, the ground-truth contours in yellow and XMem [1] results in purple.
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Figure S3: Results on the rar sequence of LV1 [8] with s, = 10. We depict the results of:
the baselines in red, the READMem variations in blue, the intersection between both in
turquoise, the ground-truth contours in yellow and XMem [1] results in purple.
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A.2 Qualitative Results on LV1 [8] with s, = 1
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4

Figure S4: Results on the blueboy sequence of LV1 [8] with s, = 1. We depict the results
of: the baselines in red, the READMem variations in blue, the intersection between both in
turquoise, the ground-truth contours in yellow and XMem [1] results in purple.
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Figure S5: Results on the dressage sequence of LV1 [8] with s, = 1. We depict the results
of: the baselines in red, the READMem variations in blue, the intersection between both in
turquoise, the ground-truth contours in yellow and XMem [1] results in purple.
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Figure S6: Results on the rat sequence of LV1 [8] with s, = 1. We depict the results of:
the baselines in red, the READMem variations in blue, the intersection between both in
turquoise, the ground-truth contours in yellow and XMem [1] results in purple.
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Dataset # of sequences avg. length medianlength std. min. length max. length
D17 [11] (validation set) 30 67 67 21 34 104
YVOS [12] (validation set) 507 134 144 42 16 180
LVI [8] 3 2470 2406 1088 1416 3589
VOT2022 [6] 62 321 242 295 41 1500
VOTS2023 [7] 144 2073 1810 1856 63 10699

Table S1: Statistics of popular sVOS and VOT datasets. For more details refer to the original
publications.

B Additional Quantitative Evaluation

We present in Table S1 useful statistics for popular (sVOS) [8, 11, 12] and Visual Object
Tracking (VOT) [6, 7] datasets. As our goal is to allow sVOS methods to perform on
long video sequence, Table S1 reveals that the LV1 dataset [8] and the recently introduced
VOTS2023 dataset [7] are ideal candidates for assessing the effectiveness of our READMem
extension.

Hence, in the main paper we focus on the LV1 dataset [8], to allow for a direct compar-
ison with contemporary sVOS methods. We include the D17 dataset [11] in our evaluations
to encompass scenarios with shorter sequences. However, to demonstrate the scalability and
versatility of our approach, we also report complementary experiments on VOTS2023 in Ta-
ble S2. We want to clarify that our method is originally designed for managing the memory
of sVOS task, and as such is not modifying the underlying architecture of the sVOS base-
lines [2, 3, 9], which are not tailored towards handling specific challenges found only in VOT
datasets (e.g., small object-to-image ratio, presence of numerous distractors).

B.1 Performance on the DAVIS (D17 [11]) Dataset

We display the performance of MiVOS [2], STCN [3] and QDMN [9] with and without the
READMem extension when varying the sampling interval s, on the D17 [11] dataset, using
the same configuration as in Section 4.

In Figure 2 of Section 1, we observe that increasing the sampling interval generally im-
proves the performance of all methods on long videos, regardless of the baseline employed.
However, this trend does not hold when working with short video sequences, as shown in
Figure S7. Here, we notice a degradation in performance for all methods when using larger
sampling intervals.

%
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Figure S7: Performance comparison of sVOS baselines (MiVOS [2], STCN [3], QDMN [9])
with and without the READMem extension on the D17 [11] dataset, while varying the sam-
pling interval s,. Regardless of the final performance, we observe a general tendency where
increasing the sampling interval (i.e., s, higher than 10) on short video sequences leads to a
performance drop.
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Therefore, it is essential to utilize a sampling interval that does not negatively impact
the performance on both long and short video sequences. This is where our READMem
extension becomes valuable, as it enables the sVOS pipeline to use a small sampling interval
(typically s, € [1 —10]) that achieves and maintains high performance for both long and short
video sequences.

B.2 Performance as a Function of Memory Size

We explore the impact of the size of the memory on the performance of MiVOS [2], STCN [3]
and QDMN [9] with and without our READMem extension on the LV1 [8] dataset. We
follow the same experimental setup as in Section 4 (with s, = 10), except for the varying
memory size N, which ranges from 5 to 50.

From Figure S8, we observe that the performance of the baselines improves as the mem-
ory size increases. Similarly, although to a lesser extent, the READMem variants also
demonstrate improved performance with larger memory sizes. However, the READMem
variations consistently outperform their respective baselines, especially when using a smaller
memory size. This is desired as a smaller memory requires less GPU resources.

Comparing Figure S8 with Figure 2, we notice that increasing the sampling interval (i.e.,
s,) of the baselines leads to a significant boost in performance compared to increasing the
memory size (i.e., N). Hence, storing a diverse set of embeddings in the memory is more
beneficial than including additional ones.

B.3 Performance on the VOTS2023 [7] Dataset

In our quantitative evaluation (refer to Table 1 of Section 4), we demonstrate and analyze the
effectiveness of our approach on sVOS datasets, encompassing both short (i.e., D17 [11])
and long (i.e., LV1 [8]) sequences, to allow for a direct comparison with contemporary sVOS
approaches (i.e., [1, 8]). In an effort, to enhance the soundness of our READMem extension,
we conduct additional experiments on the VOTS2023 dataset [7]. We tabulate in Table S2,
the results of sVOS baselines [2, 3, 9] with and without READMem on the VOTS2023
tracking benchmark.

For the evaluation we use the same settings as described in Section 4 (refer to quantitative
results) and the official VOT evaluation toolkit (version 0.6.4 released on the 31 May 2023
— https://github.com/votchallenge/toolkit). We observe from Table S2,
that the READMem variants consistently outperform their baseline counterpart.

e

-e- MVOS -e- STCN -e- QDMN

~e- READMem-MiVOS -~ READMem-STCN ~e- READMem-QDMN
0 T T T T T T T T T T T T T T T T T
5 10 20 30 40 50 5 10 20 30 40 50 5 10 20 30 40 50
Size of the Memory (i.e.. N) Size of the Memory (i.e.. N) Size of the Memory (i.e.. N)
(a) MiVOS vs. READMem-MiVOS (b) STCN vs. READMem-STCN (c) QDMN vs. READMem-QDMN

Figure S8: We compare the performance of sVOS baselines (MiVOS [2], STCN [3],
QDMN [9]) with and without the READMem extension on the LV1 [8] dataset while vary-
ing the size of the memory (i.e., N). A general tendency is that increasing the memory size,
leads to better performance.
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(Higher is better) (Lower is better)
Method Q ACC ROB ADQ NRE DRE
MiVOS [2] (CVPR 21) 0.38 0.55 0.54 0.75 0.41 0.06
MiVOS [2] (s, = 50) (CVPR 21) | 0.391001 0.55 0.5810:04 0 674008 | (351006 (71001
READMem-MiVOS (ours) 0.431005 | 571002 6ot006 (671008 | (331008 0.06
STCN [3] (NIPS 21) 0.40 0.55 0.62 0.67 0.29 0.08
STCN [3] (s, = 50) (NIPS 21) 0.40 0.55 0.614001 14006 0.29 0.1010:02
READMem-STCN (ours) 0.421002 | 561001 (61004 (574010 | 251004  ( gT0.01
QDMN [9] (ECCV 22) 0.44 0.59 0.62 0.69 0.28 0.10
QDMN [9] (s, = 50) (ECCV 22) | 0.421002 0.59  0.60%002 (631000 | 301002 (117001
READMem-QDMN (ours) 0.451001 0.59 0.631001  0,6740:02 | 271001 ( 09!0.01

Table S2: Quantitative evaluation of sVOS methods [1, 2, 3, 9] with and without READMem
on the VOTS2023 [7] datasets. We use the same settings as described in Section 4 and the
official VOT evaluation toolKkit.

In contrast to previous VOT challenges [4, 5, 6], VOTS2023 introduced new evaluation
metrics split into: (i) a primary performance metric: The Tracking Quality (Q) and (ii) sec-
ondary metrics: the Accuracy (ACC), Robustness (ROB), Not-Reported Error (NRE), Drift-
Rate Error (DRE) and Absence-Detection Quality (ADQ). Please refer to the VOTS2023
paper for more details.

C Initialization of the Memory

We investigate the performance variation when employing two different initialization for
READMem in Table S3: The strategies are as follows: (1) integrates every ¢-th frame into
the memory until full, while (2) fills the memory slots with the embeddings of the anno-
tated frame and includes a new frame to the memory if the conditions on the lower bound
on similarity and the Gramian are met (follows a greedy approach). The second strategy
yields worse results on the short scenarios and is slightly below the performance of strategy
(1) on LV1 [8]. We argue that with longer sequences the memory has more opportunities to
integrate decisive frame representations in the memory to use as a reference. Hence, initial-
ization plays a crucial role in short videos, but as the method observes longer videos and has
access to a larger pool of frames to select from, the importance diminishes.

D Discussion and Limitations

We are aware of the limitations imposed by the hand-crafted threshold for the lower sim-
ilarity bound [, although to avoid any fine-tuning, we set the threshold value to 0.5. A

READMem-MiVOS READMem-STCN READMem-QDMN

Initialization | 7&Fivi J&Fp17 | T&Fivi JT&Fp17 | T&Fivi JT&Fpiy
(D) 83.6 84.6 82.6 84.0 84.0 86.1
2) 82.7 73.7 85.3 73.6 72.5 73.3

Table S3: Performance variation when leveraging two different initialization strategies for
READMem-MiVOS. Besides the initialization strategy, the remaining parameters are con-
sistent to Section 4 (we set s, = 10).
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more thoughtful approach would incorporate a learnable parameter. This approach could
potentially lead to improved performance, albeit at the expense of the plug-and-play nature
of our extension. Another point for improvement is to reduce the participation of the back-
ground when computing the similarity between two embeddings. A possible enhancement
is to integrate either the segmentation mask estimated by the sVOS pipeline or use the mem-
ory values to estimate a filter that can be applied to the memory keys before computing a
similarity score.

E Training

For our experiments, we utilize the original weights provided by the authors of MiVOS [2],
STCN [3], and QDMN [9]. Our primary focus is to showcase the benefits of our extension
(i.e., READMem) without modifying the baselines. To provide a comprehensive overview
of the baselines, we briefly elaborate on the training methodology. The training procedure
follows the regiment presented in STM [10] and refined in the subsequent work, MiVOS [2].
The training is divided into two stages employing the bootstrapped cross-entropy loss [2] and
utilizing the Adam optimizer (refer to the original papers [2, 3, 9] and their supplementary
materials for detailed insights).

The training comprises the following stages: (1) A pre-training stage, in which static
image datasets are used as in [10] to simulate videos consisting of three frames. While all
three frames originate from the same image, the second and third frames are modified using
random affine transformations (2) A main-training stage, which uses the DAVIS [11] and
the Youtube-VOS [12] datasets (which provide real videos). Similar to the pre-training stage,
three frames from a video are sampled, gradually increasing the temporal gap from 5 to
25 frames during training. Subsequently, the temporal gap is annealed back to 5 frames,
following a curriculum training approach [13]. (Optional) Moreover, after the pre-training
stage a synthetic dataset BL30K [2] can be leveraged to enhance the ability of the model to
better handle complex occlusion patterns.

References

[1] Ho Kei Cheng and Alexander G. Schwing. XMem: Long-term video object segmen-
tation with an atkinson-shiffrin memory model. In European Conference on Computer
Vision (ECCV), 2022.

[2] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Modular interactive video object
segmentation: Interaction-to-mask, propagation and difference-aware fusion. In Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2021.

[3] Ho Kei Cheng, Yu-Wing Tai, and Chi-Keung Tang. Rethinking space-time networks
with improved memory coverage for efficient video object segmentation. In Neural
Information Processing Systems (NeurlPS), 2021.

[4] Matej Kristan et al. The eighth visual object tracking vot2020 challenge results. In
European Conference on Computer Vision (ECCV), 2020.

[5] Matej Kristan et al. The ninth visual object tracking vot2021 challenge results. In
International Conference on Computer Vision (ICCV), 2021.


Citation
Citation
{Cheng, Tai, and Tang} 2021{}

Citation
Citation
{Cheng, Tai, and Tang} 2021{}

Citation
Citation
{Liu, Yu, Yin, Zhao, Zhao, Xia, and Yang} 2022

Citation
Citation
{Oh, Lee, Xu, and Kim} 2019

Citation
Citation
{Cheng, Tai, and Tang} 2021{}

Citation
Citation
{Cheng, Tai, and Tang} 2021{}

Citation
Citation
{Cheng, Tai, and Tang} 2021{}

Citation
Citation
{Cheng, Tai, and Tang} 2021{}

Citation
Citation
{Liu, Yu, Yin, Zhao, Zhao, Xia, and Yang} 2022

Citation
Citation
{Oh, Lee, Xu, and Kim} 2019

Citation
Citation
{Pont-Tuset, Perazzi, Caelles, Arbeláez, Sorkine-Hornung, and {Van Gool}} 2017

Citation
Citation
{Xu, Yang, Fan, Yue, Liang, Yang, and Huang} 2018

Citation
Citation
{Zhang, Hu, Zhang, Pan, and Alibaba} 2020

Citation
Citation
{Cheng, Tai, and Tang} 2021{}


8 VUJASINOVIC, BULLINGER, BECKER, SCHERER, ARENS, STIEFELHAGEN : READMEM

(6]

(7]
(8]

(9]

(10]

(11]

(12]

[13]

Matej Kristan et al. The tenth visual object tracking vot2022 challenge results. In
European Conference on Computer Vision (ECCV), 2022.

Matej Kristan et al. The vots2023 challenge performance measures. 2023.

Yongqing Liang, Xin Li, Navid Jafari, and Jim Chen. Video object segmentation with
adaptive feature bank and uncertain-region refinement. In Neural Information Process-
ing Systems (NeurIPS), 2020.

Yong Liu, Ran Yu, Fei Yin, Xinyuan Zhao, Wei Zhao, Weihao Xia, and Yujiu Yang.
Learning quality-aware dynamic memory for video object segmentation. In European
Conference on Computer Vision (ECCV), 2022.

Seoung Wug Oh, Joon-Young Lee, Ning Xu, and Seon Joo Kim. Video object segmen-
tation using space-time memory networks. In International Conference on Computer
Vision (ICCV), 2019.

Jordi Pont-Tuset, Federico Perazzi, Sergi Caelles, Pablo Arbeldez, Alexander Sorkine-
Hornung, and Luc Van Gool. The 2017 davis challenge on video object segmentation.
arXiv:1704.00675, 2017.

Ning Xu, Linjie Yang, Yuchen Fan, Dingcheng Yue, Yuchen Liang, Jianchao Yang, and
Thomas Huang. Youtube-vos: A large-scale video object segmentation benchmark.
arXiv preprint arXiv:1809.03327, 2018.

Peng Zhang, Li Hu, Bang Zhang, Pan Pan, and DAMO Alibaba. Spatial consistent
memory network for semi-supervised video object segmentation. In Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2020.



