Inte

Abstract

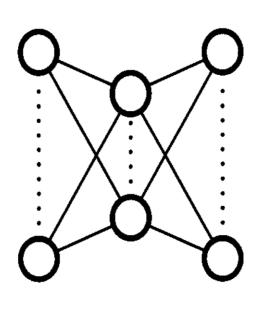
This work proposes a fast and principled method for unsupervised anomaly detection and segmentation. Our method operates under the assumption of having access solely to anomaly-free training data while aiming to identify anomalies of an arbitrary nature on test data. We make our code available at: <u>https://intellabs.github.io/dfm</u>

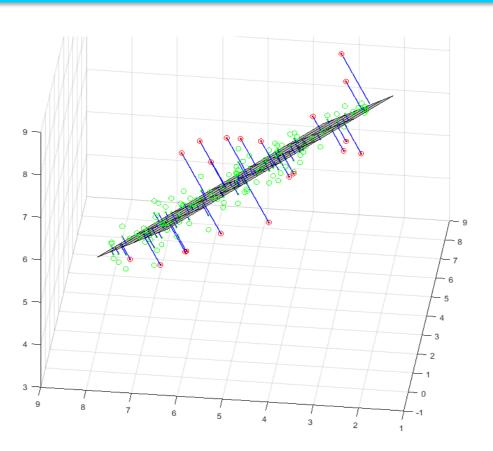
Contributions

The principal contributions of the work include:

- > a generalized approach that utilizes a shallow linear autoencoder as a principled out-of-distribution detection method operating in the feature space produced by a pre-trained DNN.
- a solid theoretical foundation for the method establishing the *feature reconstruction error* (FRE) as a principled measure of uncertainty. simultaneous solving of image-level anomaly detection and pixel-
- level anomaly segmentation.
- multiple implementation strategies addressing concerns related to memory, computational complexity, and dataset size.
- extensive experimentation showing state-of-the-art quality, as well as speed, robustness and insensitivity to parameterization.

Preliminaries: linear auto-associative networks





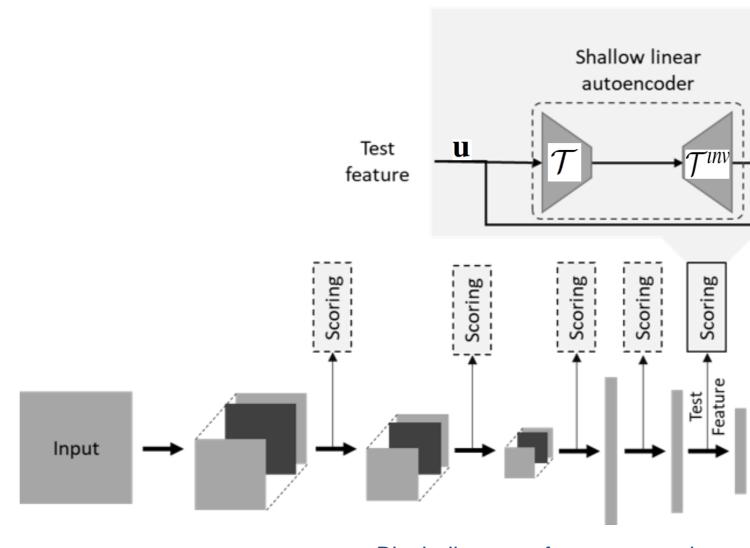
Auto-associative network.

FRE visualization as distance to the principal subspace.

- The auto-associative network performs orthogonal projection onto the subspace spanned by the first principal eigenvectors of a covariance matrix associated with the training patterns.
- How does a neural network perform when exposed to a pattern never seen previously?
- > In the auto-associative case, a precise quantitative answer can be given: the distortion on a new pattern is exactly given by its distance to the subspace generated by the first p eigenvectors of the data covariance matrix.

FRE: A Fast Method For Anomaly Detection And Segmentation Ibrahima J. Ndiour, Nilesh A. Ahuja, Utku Genc and Omesh Tickoo Intel Labs

Proposed Approach



Block diagram of our proposed approach.

- At training: we pass the training data through the backbone network for a single forward pass and consider the intermediate (training) features at a given layer k. Subsequently, we train a (tied) shallow linear autoencoder with such features.
- **During inference:** the autoencoder is applied to a test feature **u** to obtain the reduced-dimension embedding, and its reconstruction back into the original (feature) space. The *feature reconstruction error* (FRE) is then calculated and used as an uncertainty score:

$$FRE(\mathbf{u}, \mathcal{T}) = \mathbf{e} \triangleq \mathbf{u} - \mathbf{\hat{u}} = \mathbf{u} - (\mathcal{T}^{inv} \circ \mathcal{T})\mathbf{u}$$

- The following detection score is highly effective at discriminating between normal and anomalous samples:
- To derive the segmentation map, we perform channel-wise averaging on the FRE (re-arranged as a tensor) in order to accumulate the FRE errors along the channel dimension. This produces a single-channel FRE anomaly map M, where higher intensity regions correspond to anomalies.

$$\mathbf{M}_k(i,j) = \frac{1}{C_k} \sum_{c=1}^{C_k} \mathbf{e}(c,i,j)$$

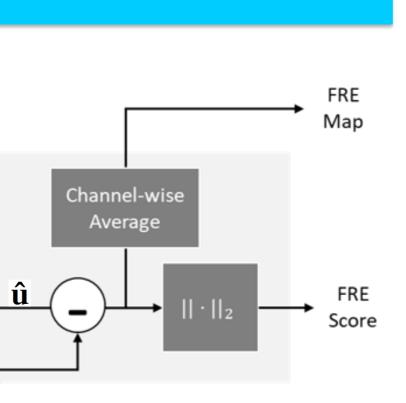
Anomaly detection results

[Category	GANomaly[1]	DifferNet[22]	SPADE* [10]	PaDiM*[11]	Pat
Ī	Average	76.2	94.9	85.5	97.9	
			ec dataset (A	UROC metric	; ↑).	

<u> </u>	-		-
GANomaly[1]	1-NN[<mark>18</mark>]	DifferNet[22]	PatchCore[21
76.6	80.0	97.7	97.9

Magnetic Tile dataset (AUROC metric \uparrow).

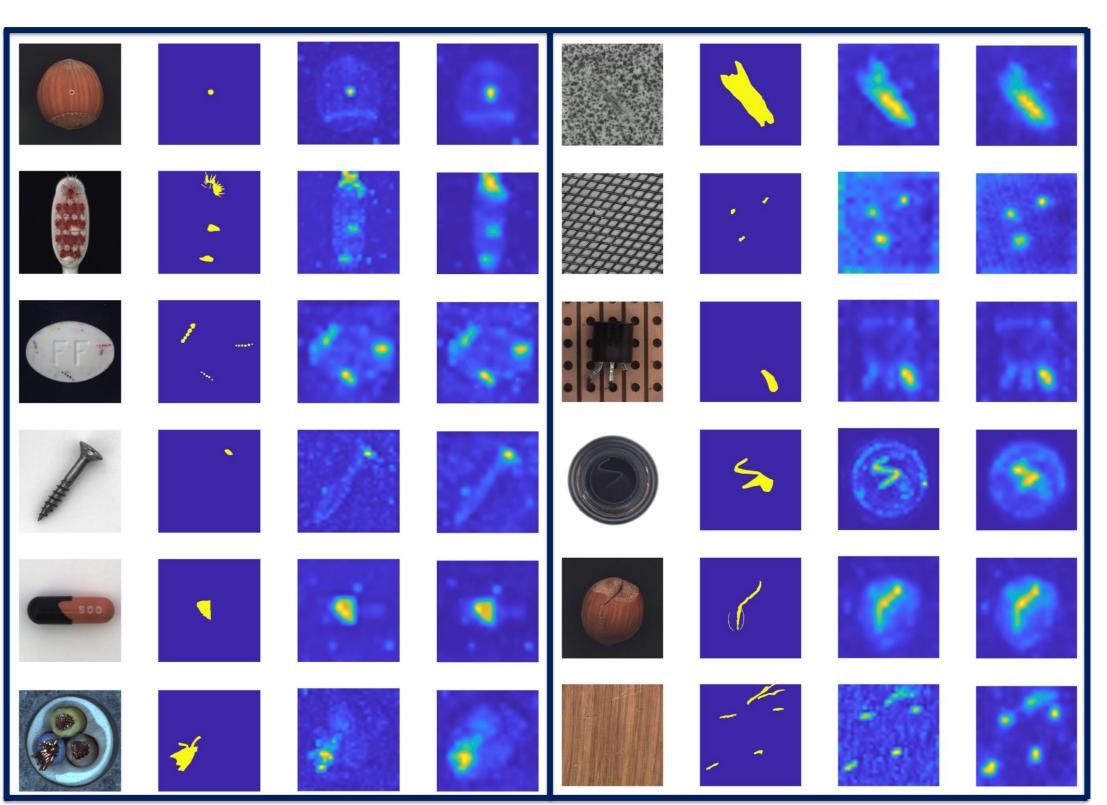
		ResNet50	VGG16	EfficientNet-	
	95.4	96.0	91.6	98.6	
MV	Tec dataset	for FRE acro	oss backbo	ones (AURO	



Anomaly segmentation results

	CNN Dict	AutoEnc-L2	SPADE	PaDiM	PatchC
Pixel AUROC (个)	78	82	96	97.5	98.1
PRO (个)	51.5	79	91.7	92.1	93.4

Pixel-AUROC and PRO metrics on MVTec dataset.



From left to right, each set of four images comprises: original image, ground truth segmentation mask, anomaly heatmap using FRE (our method) from a single layer, anomaly heatmap using FRE from three layers.

	Efficientnet B5 1L 3L		VGG16		Resnet18		Resnet50	
			1L	3L	1L	3L	1L	3L
Pixel AUROC (个)	96.4	97.2	97.4	97.4	96.8	97.8	97.8	98.2
PRO (个)	88.7	91.4	90.9	91.0	90.5	92.7	92.5	93.9

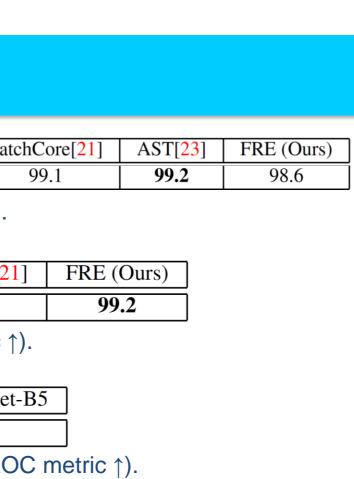
Pixel-wise AUROC and PRO metrics on MVTec for FRE across backbones.

Performance study									
	Training Time (\downarrow)				Inference				
			frames-per-sec (↑) PatchCore[5] AST[6] FRE						
	PatchCore[5]	PatchCore[5] AST[6] FRE-AEt FRE-PCA				AST[<mark>6</mark>]	FRE		
NVidia 2080-Ti	24s	24s 7min 22s		2.8s	18.4	19.6	313.1		
Intel Xeon 8280	3mn 38s 25min 24s 1min 18s 6.3s		6.3s	7.11	11.8	52.6			
Intel i7-1270P	4mns 5s	5hr 8min	2min 52s	22.8s	1.28	2.8	16.4		

Training times and inference framerates evaluated on different computing platforms.

Conclusion

This work presented a fast, generalized approach for visual anomaly detection and segmentation. We propose applying a shallow, linear autoencoder on the intermediate features produced by a pretrained DNN and computing the *feature reconstruction error* (FRE) for use as uncertainty score. Our method meets or exceeds the state of the art in quality, is fast and requires no tedious manual tuning of parameters.



FRE (Ours) AST nCore 1L 97.8 98.2 95 92.5 93.9