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We present here the supplementary material for the 2023 BMVC paper FRE: A Fast
Method For Anomaly Detection And Segmentation. While in the main text, we sometimes
offered class-average results for brevity and readability, we provide here the corresponding
detailed class-itemized results. In addition, we also provide a few more results showing
performance across various backbones and layers, as well as pictures showing performance
for a few sampled input images.

Compute Performance: Table 1 shows the performance of our method and compares it
against the state of the art on various computing platforms (laptop-class CPU, server-class
CPU and a high-end discrete GPU).

Choice of Layers: Tables 2, 3, 4, and 5 respectively provide a class-average summary
of anomaly detection and segmentation performance for FRE across various layers of Ef-
ficientNet_B5, Resnet18, Resnet50 and VGG16 backbones. In tables 8 and 9, we show
the class-itemized segmentation performance of FRE across multiple layers of a Resnet50
backbone. We observe that the middle layers generally tend to provide better detection and
location performance relative to layers closer to either the input or the output.

Additional Outputs: Figure 1 shows a few examples of segmentation maps obtained at
various layers of a Resnet50 backbone, as well as the segmentation maps obtained with the
combination of 3 layers. Figure 2 shows examples of the segmentation maps produced by
FRE with a single layer, and with the combination.

Implementation strategies: Figure 3 shows the (class-itemized) empirical validation of
the different implementation strategies presented in the main paper.It is seen that all strategies
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converge to the same anomaly detection performance thereby demonstrating that the three
strategies are basically equivalent.

Sensitivity to parametrization: Figures 4 and 5 provide the class-itemized detection
and segmentation performance for FRE while varying the only parameter of the method,
for multiple layers of a Resnet50 backbone. These figures not only show insensitivity to
parametrization, but they also give a more detailed view of the performance of the method.

Choice of backbones: Tables 6 and 7 shows detailed class-itemized pixel-wise AUROC
metrics for the segmentation benchmark and for FRE across backbones.

Training Time (↓) Inference
frames-per-sec (↑)

PatchCore[5] AST[6] FRE-AEt FRE-PCA PatchCore[5] AST[6] FRE
NVidia 2080-Ti 24s 7min 22s 5.9s 2.8s 18.4 19.6 313.1
Intel Xeon 8280 3mn 38s 25min 24s 1min 18s 6.3s 7.11 11.8 52.6
Intel i7-1270P 4mns 5s 5hr 8min 2min 52s 22.8s 1.28 2.8 16.4

Table 1: Training times and inference framerates evaluated on different computing platforms.

features.1 features.2 features.3 features.4 features.5 features.6
Avg AUROC 74.7 86.6 89.5 95.0 97.6 98.6

Avg PRO 71.7 88.7 85.6 83.8 82.7 59.8
Avg pixel-wise AUROC 88.4 96.4 95.8 94.5 94.5 85.9

Table 2: FRE EfficientNet_B5 Performance across layers

Layer1 Layer2 Layer3 Layer4
Avg AUROC 88.3 93.5 95.4 91.4

Avg PRO 85.3 90.5 90.2 68
Avg pixel-wise AUROC 94.3 96.8 97.3 92

Table 3: FRE Resnet18 Performance across layers
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Layer1 Layer2 Layer3 Layer4
Avg AUROC 87.9 90.7 96.0 91.9

Avg PRO 85.5 92.5 91.3 71.3
Avg pixel-wise AUROC 94.7 97.8 97.4 93.2

Table 4: FRE Resnet50 Performance across layers

feat.8 feat.11 feat.13 feat.15 feat.18 feat.20 feat.22 feat.25 avgpool
Avg AUROC 84.0 88.8 89.5 90.2 90.1 90.8 92.2 93.0 91.6

Avg PRO 83.4 90.2 90.9 89.4 89.1 88.7 87.1 83.2 NA
Avg

Pixel-wise 93.9 97.3 97.4 96.7 96.7 96.3 95.7 95.6 NA
AUROC

Table 5: FRE VGG16 Performance across layers

Figure 1: Using a Resnet50 backbone, for each row: input image, ground truth segmentation
mask, FRE segmentation map obtained with layer1, FRE segmentation map obtained with
layer2, FRE segmentation map obtained with layer3, FRE segmentation map obtained with
the combination of the 3 layers (layer1, layer2 and layer3).
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Figure 2: From left to right, each set of four images comprises: Original image, ground truth
segmentation mask, anomaly heatmap using FRE (our method) from a single layer, anomaly
heatmap using FRE from three layers.
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Figure 3: Class-itemized AUROC detection results for FRE-PCA (blue), FRE-AE (red) and
FRE-AEt (green) with Resnet50 layer3. For FRE-AE and FRE-AEt, snapshots of the models
being learned after every 100 epochs are used to show the convergence to FRE-PCA.
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Figure 4: Class-itemized detection results (AUROC) while varying the only parameter of our
method used with a ResNet50 backbone. Blue, red, magenta, green and gold resp. denote
the following layers: layer1, layer2, layer3, layer4, and avgpool. They show insensitivity to
parametrization, esp. within reasonable bounds [0.95,1.0)
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Figure 5: Class-itemized segmentation results (PRO) while varying the only parameter of
our method used with a ResNet50 backbone. Blue, red, magenta, and green resp. denote the
following layers: layer1, layer2, layer3, and layer4. They show insensitivity to parametriza-
tion, esp. within reasonable bounds [0.95,1.0)
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CNN (Dict)[4] AE (L2)[1] SPADE[2] PaDiM[3] PatchCore[5] AST[6] FRE (1L & 3L)
Carpet 72 59 97.5 99.1 99 - 98.3 99.2
Grid 59 90 93.7 97.3 98.7 - 97.3 98.1

Leather 87 75 97.6 99.2 99.3 - 99.8 99.8
Tile 93 51 87.4 94.1 95.6 - 95.1 96.5

Wood 91 73 88.5 94.9 95 - 96.7 97.7
Bottle 78 86 98.4 98.3 98.6 - 98.7 98.8
Cable 79 86 97.2 96.7 98.4 - 97.4 97

Capsule 84 88 99 98.5 98.8 - 98.8 99.1
Hazelnut 72 95 99.1 98.2 98.7 - 98.7 99.1
Metal nut 82 86 98.1 97.2 98.4 - 96.6 97.3

Pill 68 85 96.5 95.7 97.4 - 96.9 97
Screw 87 96 98.9 98.5 99.4 - 98.9 99.2

Toothbrush 77 93 97.9 98.8 98.7 - 98.4 98.7
Transistor 66 86 94.1 98.5 96.3 - 96.3 96.5

Zipper 76 77 96.5 98.5 98.8 - 98.6 98.8
Average 78 82 96 97.5 98.1 95.0 97.8 98.2
Table 6: MVTec Anomaly Segmentation benchmark with pixel-wise AUROC metric.

Efficientnet B5 VGG16 Resnet18 Resnet50
1L 3L 1L 3L 1L 3L 1L 3L

carpet 94.6 97.6 97.5 97.8 97.9 99.0 98.4 99.2
grid 95.0 97.3 98.2 98.5 96.7 97.4 97.3 98.1

leather 98.6 99.3 98.8 99.0 99.7 99.8 99.8 99.8
tile 93.4 95.5 92.6 92.7 88.8 93.3 95.1 96.5

wood 91.7 93.8 96.2 96.3 94.6 96.6 96.7 97.7
bottle 98.6 98.3 97.9 97.6 98.4 98.6 98.7 98.8
cable 96.3 96.7 95.7 95.8 95.9 96.7 97.4 97.0

capsule 98.7 98.5 99.2 99.2 98.3 98.9 98.8 99.1
hazelnut 98.3 98.1 98.8 98.9 98.3 99.0 98.8 99.1
metal nut 96.2 95.5 96.3 96.4 95.4 97.0 96.6 97.3

pill 96.4 96.1 97.5 97.6 96.1 97.0 96.9 97.0
screw 98.4 98.1 99.5 99.6 99.1 99.3 98.9 99.2

toothbrush 98.3 97.9 98.5 98.5 98.2 98.9 98.4 98.7
transistor 95.4 96.7 95.6 95.6 95.6 96.4 96.3 96.5

zipper 96.9 97.7 98.3 98.0 98.4 98.8 98.6 98.8
Average 96.4 97.2 97.4 97.4 96.8 97.8 97.8 98.2

Table 7: MVTec Anomaly Segmentation: pixel-wise AUROC for FRE across backbones

Layer1 Layer2 Layer3 Layer4
carpet 78.48 93.07 94.21 78.10
grid 71.36 87.21 89.29 48.97

leather 88.10 98.31 97.56 79.24
tile 57.87 82.49 82.71 70.89

wood 88.25 92.66 89.58 53.39
bottle 94.09 95.45 93.22 76.90
cable 82.02 90.21 85.04 70.86

capsule 95.90 94.34 91.75 68.69
hazelnut 96.25 94.06 93.10 84.86
metal nut 88.46 92.00 91.49 74.40

pill 87.34 93.01 90.41 72.29
screw 94.39 95.44 93.88 74.63

toothbrush 92.13 91.58 89.93 59.14
transistor 83.14 92.86 94.72 84.62

zipper 84.53 94.63 93.07 71.96
Average 85.49 92.49 91.33 71.26
Table 8: PRO across Resnet50 layers
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Layer1 Layer2 Layer3 Layer4
carpet 92.01 98.35 98.68 96.11
grid 90.66 97.28 97.57 81.92

leather 96.12 99.76 99.49 98.11
tile 83.15 95.09 95.22 94.17

wood 94.57 96.67 95.75 86.28
bottle 97.93 98.71 98.27 95.71
cable 94.72 97.37 95.56 93.11

capsule 98.62 98.81 98.37 95.62
hazelnut 98.87 98.75 98.35 96.83
metal nut 95.82 96.63 96.66 92.18

pill 94.24 96.86 95.64 93.57
screw 98.46 98.94 98.27 94.79

toothbrush 98.05 98.37 98.22 92.66
transistor 92.30 96.30 96.54 91.44

zipper 94.89 98.61 98.63 95.51
Average 94.69 97.77 97.41 93.2

Table 9: pixel-wise AUROC across Resnet50 layers
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