

Learning Anatomically Consistent Embedding for Chest Radiography

上海交通大學 Ziyu Zhou*^{1,2}, Haozhe Luo^{*2}, Jiaxuan Pang², Xiaowei Ding¹⁺, Michael B. Gotway³, Jianming Liang²⁺ ¹Shanghai Jiao Tong University ²Arizona State University ³Mayo Clinic

Background: Self-supervised learning (SSL) pretrains generic source models without using expert annotation, allowing the pretrained models to be quickly fine-tuned into high-performance application-specific target models and minimizing annotation cost.

Motivation: Compared with photographic images, medical images acquired with the same image protocol exhibit high consistency in anatomy. To exploit this anatomical consistency, this paper introduces a novel SSL approach, called **PEAC** (patch embedding of anatomical consistency).

Contributions: We propose to learn **global and local consistencies** via stable grid-based matching, transfer pre-trained PEAC models to diverse downstream tasks, and demonstrate that (1) PEAC achieves significantly better performance than the existing state-of-the-art fully/self-supervised methods; (2) PEAC captures the anatomical structure consistency across views of the same patient and across patients of different genders, weights, and healthy statuses.

Motivations: (a) there are large (global) and small (local) anatomical structures; (b) lung diseases can be local or global.

PEAC: Patch Embeddings of Anatomical Consistency

- built on Student-Teacher Model
- autodidactically gleans finegrained image details by patch order classification and patch appearance restoration;
- learns coarse-grained global 3. features by **global consistency**;
- learns fine-grained local 4. features from overlapped patches by local consistency.

Dataset

CheXpert

ShenZhen

JSRT

ChestX-ray14

RSNA Pneumonia

Task

* The usage of each dataset in our experiments is denoted with P for pretraining, F for finetuning.

Tuberculosis classification

Result 1: PEAC outperforms fully-supervised pretrained models

Backbone	Pretraining data	Pretraining method	ChestX-ray14	CheXpert	ShenZhen	RSNA	Pneumonia
ResNet-50	No pretraining ImageNet-1K ChestX-ray14	(i.e., training from scratch) Fully-supervised Fully-supervised	$\begin{array}{c} 80.40 \pm 0.05 \\ 81.70 \pm 0.15 \\ - \end{array}$	86.60 ± 0.17 87.17 ± 0.22 87.40 ± 0.26	90.49 ± 1.16 94.96 ± 1.19 96.32 ± 0.65	70.0 73.0 71.0	$\begin{array}{c} 00 \pm 0.50 \\ 04 \pm 0.35 \\ 64 \pm 0.37 \end{array}$
ViT-B	No pretraining ImageNet-21K ChestX-ray14 ChestX-ray14	(i.e., training from scratch) Fully-supervised Fully-supervised PEAC ⁻³ (self-supervised)	$70.84 \pm 0.19 \\ 77.55 \pm 1.82 \\ - \\ 80.04 \pm 0.20$	$\begin{array}{c} 80.78 \pm 0.13 \\ 83.32 \pm 0.69 \\ 84.37 \pm 0.42 \\ 88.10 \pm 0.29 \end{array}$	$\begin{array}{c} 84.46 \pm 1.65 \\ 91.85 \pm 3.40 \\ 91.23 \pm 0.81 \\ 96.69 \pm 0.30 \end{array}$	66.5 71.5 66. <u>73.</u>	59 ± 0.39 50 ± 0.52 96 ± 0.24 77 ± 0.39
Swin-B	No pretraining ImageNet-21K ChestX-ray14 ChestX-ray14 ChestX-ray14	(i.e., training from scratch) Fully-supervised Fully-supervised PEAC ⁻¹ (self-supervised) PEAC (self-supervised)	$74.29 \pm 0.41 \\ 81.32 \pm 0.19 \\ - \\ \frac{81.90 \pm 0.15}{\textbf{82.78} \pm \textbf{0.21}}$	85.78 ± 0.01 87.94 ± 0.36 87.22 ± 0.22 $\frac{88.64 \pm 0.19}{88.81 \pm 0.57}$	$\begin{array}{cccccccc} 85.83 \pm 3.68 & 70.\\ 94.23 \pm 0.81 & 73.\\ 91.35 \pm 0.93 & 70.\\ \underline{97.17 \pm 0.42} & 73.\\ \mathbf{97.39 \pm 0.19} & 74. \end{array}$		02 ± 0.42 15 ± 0.61 67 ± 0.18 70 ± 0.48 39 ± 0.66
Resul ⁻ transfe	t <mark>4</mark> : PEAC e rability for	exhibits prominent segmentation tas	t ks	ult 5: PE/ small	AC is outst data regir	andin: ne	g in
100 - 98 - 96 -	***	PEAC POPAR Supervised Scratch n.s.: No Significance *: p<0.05 **: ***: p<0.001	Met Mo© Barl ^{p<0.01} Sim DiRA	: hod Co-v2 ow Twins Siam A _{MoCo-v2}	25% 74.71 76.23 73.05 77.55	50% 76.89 77.59 75.20 78.74	100% 80.36 80.45 79.62 <u>81.12</u>
94 -		n.s.	PEA	С	77.78	79.29	82.78

ViT-B		MoCo V3	79.20 ± 0.29	86.91 ± 0.77	85.71 ± 1.41	72.79 ± 0.52	
		SimMIM	79.55 ± 0.56	87.83 ± 0.46	92.74 ± 0.92	72.08 ± 0.47	
	ImageNet	DINO	78.37 ± 0.47	86.91 ± 0.44	87.83 ± 7.20	71.27 ± 0.45	
		BEiT	74.69 ± 0.29	85.81 ± 1.00	92.95 ± 1.25	72.78 ± 0.37	
		MAE	78.97 ± 0.65	87.12 ± 0.54	93.58 ± 1.18	72.85 ± 0.50	
	ChestX-ray14	PEAC ⁻³	80.04 ± 0.20	88.10±0.29	96.69 ± 0.30	73.77 ± 0.39	
3. 	ImageNet	SimMIM	81.39 ± 0.18	87.50 ± 0.23	87.86 ± 4.92	73.15 ± 0.73	
Swin-B	ChastV nov14	PEAC ⁻¹	81.90 ± 0.15	88.64 ± 0.19	97.17 ± 0.42	73.70 ± 0.48	
	ChestA-ray14	PEAC	$\textbf{82.78} \pm \textbf{0.21}$	88.81 ± 0.57	$\textbf{97.39} \pm \textbf{0.19}$	74.39 ± 0.66	
			medical in	nages			
Paakhono	Pretrained	Mathad		ChaVnart	Shan 7han	RSNA	
Dackbolle	dataset	Wiethou	ChestA-lay14	Chexpert	Shenzhen	Pneumonia	
	ChestX-ray14	SimSiam	79.62 ± 0.34	83.82 ± 0.94	93.13 ± 1.36	71.20 ± 0.60	
ResNet-50		MoCoV2	80.36 ± 0.26	86.42 ± 0.42	92.59 ± 1.79	71.98 ± 0.82	
		Barlow Twins	80.45 ± 0.29	86.90 ± 0.62	92.17 ± 1.54	71.45 ± 0.82	
ViT-B	ChestX-ray14	SimMIM	79.20 ± 0.19	83.48 ± 2.43	93.77 ± 1.01	71.66 ± 0.75	
		PEAC ⁻³	80.04 ± 0.20	88.10±0.29	96.69 ± 0.30	73.77 ± 0.39	
		SimMIM	79.09 ± 0.57	86.75 ± 0.96	93.03 ± 0.48	71.99 ± 0.55	
Swin-B		1	00 51 1 0 15	00 16 10 66	06.01 1.0.10		
o min D	ChestX-ray14	$POPAR^{-1}$	80.51 ± 0.15	88.16 ± 0.66	96.81 ± 0.40	73.58 ± 0.18	

With the best bolded and the second best underlined, a statistical analysis is conducted between the best vs. others, where blue-highlighted boxes indicate no statistically significant difference at level p = 0.05.

Visualization 2: Cross-patient and crossview correspondence

Visualization of PEAC model

Visualization 1: t-SNE of landmark anatomies across patients

