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Learning Anatomically Consistent
Embedding for Chest Radiography

Supplementary Materials

1 Experiments

1.1 Pretraining settings

We implement PEAC on ViT-B [5] and Swin-B [8] for their notable scalability, global re-
ceptibility, and interpretability [4, 5]. Both PEACs are trained on ChestX-rayl4 [14] by
amalgamating the official training and validation splits. In PEAC ViT-B, input images of
size 224x224 lead to 196 (14x14) shufflable patches, while in PEAC Swin-B, it results in
49 (7x7) shufflable patches due to the Swin hierarchical architecture. To learn the same
contextual relationship as in PEAC ViT-B, we pretrain PEAC Swin-B with images of size
448x448, but the tissue (physical) size covered by the images remains unchanged, resulting
in the same 196 (14 x 14) shufflable patches in terms of the (physical) tissue size.

In PEAC, a multi-class linear layer is designated for patch order classification (Eq. 1), and
a single convolutional block is employed for patch appearance restoration (Eq. 2). The global
and local consistency branches utilize two 3-layer MLPs as expanders before computing
consistency losses. When training PEAC, we use a learning rate of 0.1, a momentum of 0.9
for the SGD optimizer, a warmup period of 5 epochs, and a batch size of 8. The teacher
model is updated after each iteration via EMA with an updating parameter of 0.999. We
utilize four Nvidia RTX3090 GPUs for training PEAC models with images of size 224 x224
for 300 epochs, but we reduce the number of epoch to 150 when the image size is 448 x448.

1.2 Target Tasks and Datasets

We evaluate our PEAC models by finetuning on four classification target tasks ChestX-
ray14 [14], CheXpert [6], NIH Shenzhen CXR [7], RSNA Pneumonia [1] and one segmen-
tation task JSRT [13]:

¢ ChestX-rayl4 [14], which contains 112K frontal-view X-ray images of 30805 unique
patients with the text-mined fourteen disease image labels (where each image can
have multi-labels). We use the official training set 86K (90% for training and 10% for
validation) and testing set 25K.
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* CheXpert [6], which includes 224K chest radiographs of 65240 patients and capturing
14 thoracic diseases. We use the official training data split 224K for training and val-
idation set 234 images for testing. We train on the 14 thoracic diseases but follow the
standard practice by testing on 5 diseases (Atelectasis, Cardiomegaly, Consolidation,
Edema, and Pleural Effusion).

¢ NIH Shenzhen CXR [7], which contains 326 normal and 336 Tuberculosis (TB)
frontal-view chest X-ray images. We split 70% of the dataset for training, 10% for
validation and 20% for testing which are the same with [10];

* RSNA Pneumonia [1], which consists of 26.7K frontal view chest X-ray images and
each image is labeled with a distinct diagnosis, such as Normal, Lung Opacity and
Not Normal (other diseases). 80% of the images are used to train, 10% to valid and
10% to test. These target datasets are composed of both multi-label and multi-class
classification tasks with various diseases.

* JSRT [13], which is a organ segmentation dataset including 247 frontal view chest
X-ray images. All of them are in 2048 x2048 resolution with 12-bit gray-scale levels.
Both lung, heart and clavicle segmentation masks are available for this dataset. We
split 173 images for training, 25 for validation and 49 for testing.

1.3 Finetuning Setting
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Figure 8: Comparison of segmentation results on JSRT dataset. To investigate the per-
formance on segmentation tasks, we compare PEAC with SSL method POPAR, fully-
supervised model, and model training from scratch.

We transfer the PEAC pretrained models to each target task by fine-tuning the whole pa-
rameters for the target classification tasks. For the target classification tasks, we concatenate
a randomly initialized linear layer to the output of the classification (CLS) token of PEAC
ViT-B models. Due to the structural difference with ViT-B model, PEAC Swin-B models
don’t equip the CLS token and we add an average pooling to the last-layer feature maps, then
feed the feature to the randomly initialized linear layer. The AUC (area under the ROC curve)
is used to evaluate the multi-label classification performance (ChestX-ray14, CheXpert and
NIH Shenzhen CXR), while the accuracy is used to assess the multi-class classification per-
formance (RSNA Pneumonia). For the target segmentation task, we use UperNet [15] as the
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training model. We concatenate pretrained Swin-B and randomly initialized prediction head
for segmenting. In JSRT dataset, we independently train 3 models for the three organs lung,
heart and clavicle and the Dice is used to evaluate the segmentation performance, as shown
in and Fig. 8 . Following [8], in fine-tuning experiments we use AdamW [9] optimizer with
a cosine learning rate scheduler, linear warm up of 20 epochs while the overall epoch is 150,
and 0.0005 for the maximum learning rate value. The batch sizes are 32 and 128 for image
sizes of 448 and 224, respectively. We train with single Nvidia RTX3090 24G GPU for
performing each experiment.

Table 6: We add the four loss functions one by one to show the effectiveness of our method in
terms of performance. All models in the ablation studies are pretrained on ChestX-ray14 [14]
with Swin-B backbone at two different image resolutions, and they are also fine-tuned at two
different image resolutions as denoted by PT—FT in the table. Our official implementation
PEAC achieves the best performance or the second best on three target tasks with pretraining
and finetuning resolutions set at 448 x 448.

PEAC Version Shu::ed T | '(I;D o | ZSFAR Lo;el: | — PEAC Losts:ez | T ;arg;:] Tasks — i
patches ‘ ‘ o o ‘ 66 b.0r ‘ “hestX-ray ShenZhen SNA Pneumonia
PEAC(’HE N ) % X v X X X 78.58£0.17 92.65+0.65 71.46+0.41
49 2 22
PEAC.) 2474 v X v X X 79.35+0.18 93.8540.09 72.380.15
PEAC ((’zu) v v v X X 79.57+0.22 95.10+0.20 72.59+0.13
PF,AC(; X X X X v X 80.85+0.14 96.5940.11 73424041
PEAC(, ) % 982 202 v X v X v X 81.13£0.18 96.70:0.11 73.750.04
PEAC(’Uzy ) % X v X v v 81.09£0.35 97.00+0.28 74.4240.34
PEAC(:)Za o v v v v v X 81.250.16 96.910.07 73.3540.19
PEAC 2 v v v v v v 81.380.03 97.140.10 74.19%0.15
1
PEA 8151 £0.22 97.070.37 73.63 £0.42
Cloae) 196 4482 - 2242 v 4 4 4 4 X 0 0740 0
PEAC! v v v v v v 81.90£0.15 97.1740.42 73704048
PEAC(, 4. ¢) 196 45?4452 v v v v v X 82.6740.11 97.1540.40 74.1840.52
PEAC v v v v v v 82.78+0.21  97.39+0.19 74.3940.66

Table 7: The local consistency loss in PEAC consistently improves the performance across
methods and target tasks.

Method | Transformations | POPAR Losses | PEAC Losses | Target Tasks
[ oD AD ‘ C'é; [.‘é; ‘ Cé’: o ['ss o ‘ ChestX-rayl14 ShenZhen RSNA Pneumonia
VICRegL ConvNeXt-B X X X X X X 79.89+0.34 94.29+0.40 73.2740.15
VICRegL(I) X X X X X v 80.15+0.11 95.21£0.11 73.86+0.43
SimMIM X X X X X X 79.09+0.57 93.03+0.48 71.99£0.55
SimMIM, Swin-B X X X X v X 81.42+ 0.04 97.11% 0.26 73.95£0.18
SimMIM(g ) X X X X v v 81.67+ 0.04 97.86% 0.07 74.25+0.24
PEAC . v v v v v X 82.6740.11 97.15+0.40 74.18+0.52
(0.a.) Swin-B — ——
PEAC v v v v v v 82.78+0.21 97.39+£0.19 74.39+0.66

2 Ablation Studies: PEAC versions and their performance

Our PEAC involves four losses:

* Patch order classification loss defined in the main paper as

n

Y VlogP? (1)
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* Patch appearance restoration loss defined in the main paper as

Z Z [EIE il ©)

z 1j=1
* Global patch embedding consistency loss defined in the main paper as £ 6= Egi?gtal +

L‘f;l”bal. £8obal ang L‘giogal are computed from an exchanged inputs into the Student

and Teacher models.
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* Local patch embedding consistency loss defined in the main paper as EL 0.6 = c’icgf +

L’l”“" Ll’““ and El"c"l are computed from an exchanged inputs into the Student and

Teacher models 5
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We remove some ingredients from our official implementation PEAC and the results
(Table 6) show the effectiveness of all loss functions. The POPAR versions involve OD
(patch order distortion) and AD (patch appearance distortion) which are studied in [12] and
the losses include patch order classification loss £y, patch appearance restoration loss £‘”
The downgraded version PEAC(’U% only include OD, in this circumstance we only compute

6. and neglect the £g". Correspondingly, only AD is added for the downgraded version
PEAC@%, in this case we only compute £ and neglect the Lg’. The PEAC versions involve
the four loss functions mentioned above. Under the same settings (the same shuffled patches
and the same pretraining and fine-tuning resolutions), we added these loss functions one by
one, and the downstream tasks performance improve successively shown in Table 6.

Our pretraining and fine-tuning setting include two resolutions 448 x448 and 224 x224.
The downgraded versions PEAC 2 contain 49 pretraining shuffled patches and are pretrained
and fine-tuned on 224 size of images while the downgraded versions PEAC™! include 196
shuffled patches and are pretrained on 448 and fine-tuned on 224 size of images. And the
performances on our official implementation PEAC (pretrained and fine-tuned on 448 im-

ages) are the best. To accelerate the training process, we only pretrain two versions PEAC
and PEAC, , ¢) on 448 images.

Table 8: The global loss in PEAC consistently boosts the performance across methods and
target tasks.

Method | Transformations | POPAR Losses | PEAC Losses | Target Tasks
oc ar G L - N
| oD AD | £ L | Ly o L, o | ChestX-ray 14 ShenZhen RSNA Pneumonia

SimMIM X X X X X X 79.09+0.57 93.03+£0.48 71.9940.55
SlmMIM X X X X v X 81.42+0.04 97.11+0.26 73.95+0.18
POPAR d v X v X X X 78.58+0.17 92.65+0.65 71.46+0.41
PEAC v X v X X 81.13+0.18 96.70+0.11 73.75+£0.04
POPAR 2 v v v v X X 79.57+£0.22 95.10£0.20 72.59+0.13
PEAC, v v v v v X 81.38£0.03 96.91+0.10 74.19+0.15
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3 Ablations: Local and global consistency

3.1 PEAC local consistency improves performance

We add the local consistency loss based on several methods VICRegL [3], SimMIM [16]
shown in Table 7. In the instance of VICRegL, ConvNeXt serves as the backbone, with the
subsequent addition of local consistency loss precipitating notable enhancements in perfor-
mance across all three target tasks. The SimMIM methodology employs Swin-B as its back-
bone, with the sequential addition of global and local consistency losses leading to marked
improvements in performance. Moreover, the removal of local consistency loss from our
PEAC method corresponds to a decline in performance across the target classification tasks.
This evidence underscores the efficacy of our proposed grid-matched local consistency loss.

(1) SimMIM
Completely failed match Completely failed match
3

i "
‘r |

(2) POPAR

Figure 9:  Comparing PEAC with DINO, POPAR, and SimMIM in matching anatomical
strictures across distinct patients. For the same pair of patient images, our PEAC provides
the most reliable anatomy matching.
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3.2 PEAC global consistency boosts performance

Corresponding to the main paper in Section 4.3 (3) our experiments in Table 8§ demonstrate
that using Teacher-Student model with global embedding consistency can boost one branch
methods. We conduct experiments based on SimMIM and our own method which are all
based on Swin-B backbone, pretrained on ChestX-ray14 [14], pretrained and fine-tuned on
224 image resolution. When adding teacher branch for SimMIM to compute the global em-
bedding consistency loss, the classification performances of SimMIM,) for the three target
tasks are significantly improved. Importantly, the input images of the two branches are the
two global views which are grid-wise cropped using our method and the student branch in
SimMIM,) gets the masked patches as SimMIM while the teacher branch gets no augmenta-

tions for the input images. We also add teacher branch to the one branch methods POPAR;d2
and POPAR 2 for computing the global consistency loss. The downstream performances on

the two branches Teacher-Student models PEAC(OZg) and PEAC(fa o) are much better than

one branch methods POPAR;d2 and POPAR 2.

(a)

N/

Atelectasis

7Y Py lﬁ;W ?W‘: P

Infiltration

2 PN PR PO P

Emphysema
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Figure 10: Establishing anatomical correspondence across views, across subject weights,
across genders, and across health statuses. (a) original images of patients with no detected
pulmonary disease. (b) cross-view correspondences, utilizing cropped images from the orig-
inal set. (c) cross-weight correspondences among patients with significant differences in
weight. (d) cross-gender correspondences between male and female patients. (e) correspon-
dences among patients with varied health conditions. The left chest X-rays in (c), (d), and
(e) are the same original images from (a), contrasting with the right ones that feature patients
with distinct genders, weights, and health statuses. In (e), we also indicate diseases under
the respective images.
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4 Visualization of Upstream Models

4.1 Cross-patient and cross-view correspondence

To investigate the promotion of our method for sensing local anatomy, we match small local
patches across two patients’ and one patient’s different views of X-ray. Fig. 9 shows the
cross-patient correspondence of our PEAC and other methods. Following [2] we divide
each image with a resolution of 224 into 196 image patches using ViT-B backbone, and
match the patch embedding of each image patch to the most similar patch embedding in
another image. Finally, we selected the top 10 most similar image patches with K-means and
drew the correspondence points. By comparing the correspondence results of our methods
with SimMIM, POPAR and DINO in Fig. 9, we learn that our method PEAC can learn the
local anatomy more precisely. The details of the algorithm are shown in Fig. 11.

Descriptor2

Figure 11: Pipeline of Corresponding patch match. After training, during inference, PEAC
has only one single image as input. We eatablish cross-view or cross-patient correspondences
by first computing dense embedding for each image. Specifically, we Generate 53x53 dense
embeddings using a 14x14 grid with patch size of 16x16. The grid is shifted four times by
4 pixels to the right and for each of the shift to the right, it is further shifted four times by 4
pixels downward, leading to a grid of 53x53. Then we calculate the cosine similarity metric
of embedding vectors from one image to another and find N Best-Buddies Pairs (BBPs) [11].
Finally, from the BBPs we selected the top10 most similar image patch pairs with K-means
and drew the correspondence points.

We also use our PEAC method to match anatomical structures from a patient with no
finding (disease) to patients of different weights, different genders, and different health sta-
tuses as shown in Fig. 10. The results show that our PEAC can consistently and precisely
capture similar anatomies across different views of the same patients and across patients of
opposite genders, different weights, and various health statuses.
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