

Unifying the Harmonic Analysis of Adversarial Attacks and Robustness

Shishira R Maiya^{1,} Max Ehrlich¹, Vatsal Agarwal¹, Ser-Nam Lim², Tom Goldstein¹, Abhinav Shrivastava¹ ¹University of Maryland, College Park ²Meta

Adversarial Examples are High frequency noise?

- Adversarial examples are imperceptible and change the output of the network when added to the input.
- The imperceptible nature makes us think they must be "High frequency noise"
- But the ineffectiveness of pre-processing methods like JPEG, deblurring and denoising as adversarial defense makes us rethink this assumption.

Measuring impact of each frequency

We plot $DCT\left(\frac{dy}{ds}\right)$ which measures the impact each frequency has on the resulting output predictions. We observe that only for CIFAR-10, higher frequencies affect the output more. Adversarial examples are neither high nor low frequencies.

They are dataset dependent !

- We train models across datasets by dropping frequencies at a rate pfrom each frequency band.
- CIFAR-10 experiences only ~2% drop when lower frequencies are dropped.
- In contrast, both ImageNet and TinyImageNet exhibit more sensitivity towards dropping of lower frequencies.

- We construct adversarial attacks by restricting them to each frequency in the DCT spectrum.
- We can observe that only for CIFAR-10 normal training, the attacks restricted on higher frequencies lead to greater reduction in accuracy.

Adversarial Training with frequency perturbations

- · Models are adversarially trained across different frequency bands and tested against other bands.
- Mid-frequency adversarial training transfers well to other bands.

Accuracy Vs. Robustness tradeoff

- λ controls the amount of perturbation between low and high frequencies.
- For ImageNet and TinyImageNet, clean accuracy decreases when trained with low frequencies, while increasing robustness.
- In case of CIFAR-10, we see that there is an initial increase in robustness followed by a steep fall as higher frequencies play a significant role in robustness in this dataset.

0.00

-0.0