Adversarial Examples are High frequency noise?
- Adversarial examples are imperceptible and change the output of the network when added to the input.
- The imperceptible nature makes us think they must be "High frequency noise".
- But the ineffectiveness of pre-processing methods like JPEG, deblurring and denoising as adversarial defenses makes us rethink this assumption.

Measuring impact of each frequency
- We plot DCT which measures the impact each frequency has on the resulting output predictions.
- We observe that only for CIFAR-10, higher frequencies affect the output more.
- Adversarial examples are neither high nor low frequencies. They are dataset dependent!

Frequency impact during training
- We train models across datasets by dropping frequencies at a rate p from each frequency band.
- CIFAR-10 experiences only ~2% drop when lower frequencies are dropped.
- In contrast, both ImageNet and TinyImageNet exhibit more sensitivity towards dropping of lower frequencies.

Frequency impact on vulnerability
- We construct adversarial attacks by restricting them to each frequency in the DCT spectrum.
- We can observe that only for CIFAR-10 normal training, the attacks restricted on higher frequencies lead to greater reduction in accuracy.

Adversarial Training with frequency perturbations
- Models are adversarially trained across different frequency bands and tested against other bands.
- Mid-frequency adversarial training transfers well to other bands.

Accuracy Vs. Robustness tradeoff
- $\delta = \lambda |a \cdot \text{sgn}(\nabla_{x}L_{\mathcal{X}}) + (1 - \lambda) \cdot |a \cdot \text{sgn}(\nabla_{x}L_{\mathcal{M}})|$
- λ controls the amount of perturbation between low and high frequencies.
- For ImageNet and TinyImageNet, clean accuracy decreases when trained with low frequencies, while increasing robustness.
- In case of CIFAR-10, we see that there is an initial increase in robustness followed by a steep fall as higher frequencies play a significant role in robustness in this dataset.