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*  We train models across datasets by dropping frequencies at a rate p * Models are adversarially trained across different frequency bands and
from each frequency band. tested against other bands.
200 *  CIFAR-10 experiences only ~2% drop when lower frequencies are dropped. * Mid-frequency adversarial training transfers well to other bands.
d * In contrast, both ImageNet and TinylmageNet exhibit more sensitivity towards
dropping of lower frequencies.
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output predictions. wal T o o *  Acontrols the amount of perturbation between low and high frequencies.
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high nor low frequencies. e construct adversarial attacks by restricting them to each frequency in the
spectrum.

* We can observe that only for CIFAR-10 normal training, the attacks restricted on higher
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frequencies lead to greater reduction in accuracy.




