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A Appendix

A.1 Proofs

Here are the proofs for some results from above. In equation (13) we mentioned

∇δY = ∇xY = ∇x̂Y (1)

Consider a neural network y = h(x;θ). Let the adversarial sample be x̂ = x+δ , where δ is
the additive adversarial noise.

y = h(x̂) = h(x+δ ) (2)
dy
dx

= h(x+δ )′ ·1 =
dy
dδ

(3)

dy
dx̂

= h(x̂)′ = h(x+δ )′ hence (4)

dy
dx̂

=
dy
dδ

=
dy
dx

or ∇δY = ∇xY = ∇x̂Y (5)

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 :

In the same section’s equation (14) we also mentioned ∇xL ∝ ∇xY .

Let L =
1
2
(h(x;θ)− ŷ)2 be the loss. (6)

dL
dx

= (h(x;θ)− ŷ) ·h(x;θ)
′

(7)

here h(x;θ)
′
=

dy
dx

and (h(x;θ)− ŷ) is a constant (8)

dL
dx

= K · dy
dx

which implies (9)

∇xL ∝ ∇xY (10)

A.2 Training Details
We utilize ResNet-18 in all our experiments (unless stated otherwise). For ImageNet and
TinyImageNet datasets, we train for a total of 100 epochs, with an initial learning rate of
0.1 decayed every 30 epochs, momentum of 0.9 and a weight decay of 5e-4. In Madry
adversarial training for the same, we use an ε value of 4/255. Under adversarial training for
free setting, we train both models for 25 epochs with learning rate decayed every 8 epochs
and the m (repeat step) set to 4.

For CIFAR-10, we train the model for total of 350 epochs, starting with a learning rate
of 0.1, decayed at 150 and 250 epochs and use the same setting with an ε of 8/255 for Madry
training. In adversarial training for free setting, we train the model for 100 epochs with
learning rate decay every 30 epochs and the m value set to 8.

We utilize the pretrained models provided by PyTorch for ImageNet normal models.
All experiments involving ImageNet-based adversarial training were done using Adversarial
training for free method, with total epochs of 25 and m value set to 4.

A.3 Frequency Range-Based Perturbations
We revisit the results shown in Figure 4 and show the same in a broader sense by attacking
different frequency ranges. The results under DCT-PGD based Auto-Attack are shown in
Figure ??. We can see that the trends which were observed and discussed in earlier sections
remain unchanged.

A.4 What do frequency attacks target ?
A natural question that might arise with respect to DCT-PGD paradigm is how can we be
sure that there is proportionate distortion in the frequency space as well. We can visualize
this using simple properties of the DCT. Consider the 1-D DCT from above. Since it is a
linear transform, we can rewrite it as :

D(z) =WZ where W is the linear DCT transform on the input tensor Z (11)
x̂ = x+δ in DCT space becomes (12)

W · x̂ =W · x+W ·δ (13)
(14)
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Figure A.1: Extension to experiments shown in Figure 4. DCT-PGD Auto-Attack across
different frequency ranges. Note that for CIFAR-10 Normally trained model, we have shown
the results with slightly lower epsilons.

The elements of W represent different standard DCT basis functions, such that the lower
frequencies are in upper left corner and the higher frequencies are towards the lower right
corner. For any element i that also represents a frequency component, we can say that:

Wi · x̂i =Wi · xi +Wi ·δi (15)

Essentially, we see that in the frequency space, each component of the resulting adversarial
example x̂ is linearly distorted by the corresponding frequency component of noise δ .

A.5 Does model architecture influence perturbation gradients?
The input images or the dataset is still only one part of D(∇δY ), with the model being
the other part. We analyzed the effects of different datasets with the measure, but there
is a possibility that differing model architecture can also influence it. We ran the same
experiments using non-ResNet style architectures like DenseNet-121, ViT and VGG-16 on
ImageNet. The results are shown in Figure ??, and we can see that there is no deviation in
trends.

A.6 Does Image Size Matter?
To confirm that the anomalies of adversarial examples are indeed due the underlying dataset
and not just the size, we repeat the experiment by training models where ImageNet and Tiny-
Imagenet images are resized to smaller sizes using bicubic filter. The average Perturbation
gradients calculated from these models are shown in Figure ??. The trends tell us that the
anomalous properties exhibited by CIFAR are not merely due to their size.
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Figure A.2: (b) shows the standard 8×8 DCT block with the all 64 frequencies arranged in
zigzag order.
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Figure A.3: Average Perturbation gradients of VGG-16 models, across datasets

A.7 Extending to more datasets

We also repeat the experiments across datasets, including non-ImageNet derived datasets
like MNIST, Fashion-MNIST and CIFAR-100.The results are shown in Figure ??.

A.8 Effect of Auto-Attack

We calculate and plot the Perturbation gradients for all models under Auto-attack setting. In
general, there appears to be no significant difference when compared to results from PGD
attack. The results are shown in figure ??.

A.9 Class wise Results

We also investigate if there exists different frequency distribution in perturbation gradients
for each class in a dataset. We show these results for CIFAR-10 (Fig ??), MNIST (Fig ??)
and Fashion-MNIST (Fig ??) datasets, for both normally trained and adversarially trained
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Figure A.4: DCT of Perturbation gradients for different architectures. All models were
trained on ImageNet.

models. Apart from subtle differences, we do not see any general shift in the trends and ob-
servations. Results for CIFAR-100 and ImageNet are included along with the supplementary
zip folder and can be easily visualized using the “index.html" file.

A.10 Examples of Frequency-Based Perturbations
We show example images under different perturbation budgets of L∞ norm, across datasets
in Figures ??, ?? and ??. We also show examples of images when certain frequency bands
are dropped ?? and the complementary case of including only specified frequencies ??.
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Figure A.5: Effect of resizing the images on TinyImageNet and ImageNet.
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Figure A.6: DCT of Average Perturbation gradients across additional datasets



: 7

0 10 20 30

0

5

10

15

20

25

30

CIFAR-10 Normal

0 10 20 30

0

5

10

15

20

25

30

CIFAR-100 Normal

0 10 20

0

5

10

15

20

25

MNIST Normal

0 10 20

0

5

10

15

20

25

FMNIST Normal

0 20 40 60

0

10

20

30

40

50

60

TinyImageNet Normal

0 10 20 30

0

5

10

15

20

25

30

CIFAR-10 Adversarial

0 10 20 30

0

5

10

15

20

25

30

CIFAR-100 Adversarial

0 10 20

0

5

10

15

20

25

MNIST Adversarial

0 10 20

0

5

10

15

20

25

FMNIST Adversarial

0 20 40 60

0

10

20

30

40

50

60

TinyImageNet Adversarial

50

100

150

200

250

Figure A.7: DCT of Average Perturbation gradients with Auto-Attack
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Figure A.8: DCT of Average Perturbation gradients Classwise for CIFAR-10
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Figure A.9: DCT of Average Perturbation gradients Classwise for MNIST
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Figure A.10: DCT of Average Perturbation gradients Classwise for Fashion-MNIST
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Figure A.11: ImageNet examples where image is reconstructed using only specified fre-
quency bands

Original Image Dropped Freq: 0 - 15 Dropped Freq: 16 - 32 Dropped Freq: 32 - 48 Dropped Freq: 48 - 63

Figure A.12: ImageNet examples where image is reconstructed after dropping (zeroing)
certain frequency bands
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  = 2/255; Freq Range: 0-15   = 2/255; Freq Range: 16-32   = 2/255; Freq Range: 32-48   = 2/255; Freq Range: 48-63
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  = 8/255; Freq Range: 0-15   = 8/255; Freq Range: 16-32   = 8/255; Freq Range: 32-48   = 8/255; Freq Range: 48-63

  = 16/255; Freq Range: 0-15   = 16/255; Freq Range: 16-32   = 16/255; Freq Range: 32-48   = 16/255; Freq Range: 48-63

  = 32/255; Freq Range: 0-15   = 32/255; Freq Range: 16-32   = 32/255; Freq Range: 32-48   = 32/255; Freq Range: 48-63

Figure A.13: CIFAR-10 example images under different attack settings.
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Figure A.14: TinyImageNet example images under different attack settings.
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  = 2/255; Freq Range: 0-15   = 2/255; Freq Range: 16-32   = 2/255; Freq Range: 32-48   = 2/255; Freq Range: 48-63
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  = 8/255; Freq Range: 0-15   = 8/255; Freq Range: 16-32   = 8/255; Freq Range: 32-48   = 8/255; Freq Range: 48-63

  = 16/255; Freq Range: 0-15   = 16/255; Freq Range: 16-32   = 16/255; Freq Range: 32-48   = 16/255; Freq Range: 48-63

  = 32/255; Freq Range: 0-15   = 32/255; Freq Range: 16-32   = 32/255; Freq Range: 32-48   = 32/255; Freq Range: 48-63

Figure A.15: ImageNet example images under different attack settings. Notice that the
“perceptibility" is not affected due to frequency based attacks.


