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1 Overview
We present a comprehensive analysis of the impact on inference time resulting from the uti-
lization of our proposed superpixel-based positional encoding (PE). We specifically focus
on two processes: data loading and model forward. Additionally, we investigate the com-
putational overhead incurred when varying the number and compactness of superpixels, as
discussed in Section 2. Our ablation studies presented in Section 3 explore alternative su-
perpixel algorithms and the performance implications of the injection point, compactness,
and number of superpixels on our superpixel-PE method. Furthermore, we provide supple-
mentary qualitative examples in Section 4, demonstrating the efficacy of our approach across
different backbones.

2 Runtime analysis
In this Section, we conduct an analysis of the impact of our proposed superpixel-PE on
inference time. As described in Section 3 of the main paper, our methodology requires
extracting superpixels from the input images, calculating a sinusoidal positional encoding
based on superpixel centroids, and adding this PE map to the attentive features extracted by
a ViT-based backbone. The first operation (superpixel extraction) impacts the data loading
time, while the latter (calculating PE maps and summation) affects the forwarding time.
To accomplish superpixel extraction, we adopted an optimized variant of SLIC [1], named
FastSLIC1. For the data loading process, we fix the number of subprocesses for data loading
to 8. All timings have been measured using an Nvidia(R) GeForce RTX 2080 Ti GPU and
an Intel(R) Core(TM) i9-9820X CPU.
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Table 1: Training time with an input resolution of 480×480 for ADE20K [8] and 512×512
for Cityscapes [2], both with and without our positional encoding method. We consider
16000 superpixels with a compactness of 20.

Data train (ms) Training (ms) Data eval (ms) Inference (ms)

ADE20K:
DPT-B [4] 1.3 151.8 1.0 32.2
DPT-B+PEL 2.2 154.9 2.1 33.9

SegFormer-B4 [7] 1.9 260.4 1.1 62.4
SegFormer-B4+PEL 2.6 262.1 1.9 66.6

Cityscapes:
DPT-B [4] 1.3 165.3 1.2 35.3
DPT-B+PEL 4.1 168.7 4.3 38.0

SegFormer-B4 [7] 1.8 244.0 1.1 63.0
SegFormer-B4+PEL 4.7 246.6 4.1 68.2

We should remark that for our approach, execution time is a more relevant metric than
FLOPs because it accounts for the overhead incurred by the data loading process, which is a
consequence of the superpixel algorithm. Consequently, the use of FLOPs as a metric would
not accurately reflect this overhead, albeit limited. We measure the data loading and forward-
ing times of the DPT-Base [4] and SegFormer-B4 [7] semantic segmentation architectures,
with a single image per batch. The measured times are averaged over the ADE20K [8] valida-
tion set, comprising 2000 images cropped at a resolution of 480×480, and the Cityscapes [2]
validation set, which consists of 500 images cropped to 512×512. Table 1 provides insights
into data loading, training, and inference times on both ADE20K and Cityscapes. We mea-
sure the data loading time both during the training (i.e., Data train) and inference (i.e., Data
eval). The superpixel extraction affects the data loading time considerably (about 2×), while
the impact of superpixel-PE encoding calculation and summation is negligible and brings
instead an increase of inference time under 8% (around 1 to 5 additional milliseconds per
image). However, the data loading time is negligible compared to the inference time (∼1
msec vs ∼63 msec), and training time (∼2 msec vs ∼260 msec). Thus, our approach does
not impose significant overhead on either training or inference.

Moreover, in Table 2 we report how data loading and forward times vary when changing
the number of superpixels and the compactness value, given a fixed input resolution of 512×
512. As expected, FastSLIC is slower as the number of superpixels increases, while its
efficiency is not affected by compactness. Once again, the majority of the relative overhead
is associated with the data loading process, while the forward time, which accounts for the
majority of the overall time, is not significantly affected.

3 Ablation Studies

3.1 Evaluate additional superpixel algorithms

We assess the robustness of our method over alternative superpixel algorithms, namely Wa-
tershed [3] and SEEDS [6]. Both algorithms produce accurate boundaries with potentially
irregular shapes compared to SLIC [1, 5]. We use the same backbone architecture and super-
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Table 2: Inference time with 512 × 512 input resolution from Cityscapes [2], using our
positional encoding method, for different values of superpixels number and compactness.

Model #Superpixel Compact. Data loading (ms) Forward (ms)

DPT-B [4] - - 1.2 35.3

DPT-B+PEL 4000 1 2.4 37.8
DPT-B+PEL 4000 20 2.1 38.2
DPT-B+PEL 4000 100 2.1 38.5

DPT-B+PEL 8000 1 3.0 38.5
DPT-B+PEL 8000 20 2.8 38.1
DPT-B+PEL 8000 100 3.0 38.6

DPT-B+PEL 16000 1 4.5 38.3
DPT-B+PEL 16000 20 4.3 38.0
DPT-B+PEL 16000 100 4.1 38.2

Table 3: We investigate alternative superpixel algorithms, namely Watershed [3] and
SEEDS [6], on ADE20k and Cityscapes when employing a SegFormer-B0 backbone.

FastSLIC Watershed [3] SEEDS [6]

ADE20K:
SegFormer-B0+SinPEL 38.2 38.3 38.1
SegFormer-B0+LinearPEL 38.4 38.4 38.4

Cityscapes:
SegFormer-B0+SinPEL 71.8 72.3 72.2
SegFormer-B0+LinearPEL 72.2 72.1 72.2

pixel number to ensure a fair comparison with our initial results. Our Superpixel-PE consis-
tently improves segmentation performance also when integrated with Watershed and SEEDS
on both the ADE20k and Cityscapes datasets, demonstrating its robustness and adaptability,
as shown in Table 3. Note that Watershed and SEEDS entail a significant computational
overhead compared to FastSLIC (×3 and ×2 slower, respectively). Therefore, FastSLIC
remains a favorable choice due to its improved performance and efficiency.

3.2 Impact of superpixel-PE injection point
In the DPT-based design, our positional encoding is resized through bilinear downsampling
and added to the feature representations extracted by the encoder before the fusion operation
applied by the decoder, as described in Section 4 of the main paper. Here we investigate the
effects of varying the injection point of the superpixel-based positional encoding in encoder-
decoder architectures, along with the chosen downsampling strategy. The results are sum-
marized in Table 4. For these experiments, we consider a DPT model based on ViT-S. When
switching to the Small backbone, and considering an input resolution of 224×224, we ob-
serve that a smaller number of superpixels is necessary to generate a fine-grained segments
map L, and consequently a fine-grained PEL. In this scenario, we opt for 600 superpixels
and a compactness of 100. In the second row of Table 4, we demonstrate that shifting the
injection of the superpixel-based positional encoding after the fusion operation but before
the last convolutional layer of the decoder, does not yield beneficial results. This observation
can be explained by the fact that a single convolutional layer is insufficient to capture the
spatial arrangement of the centroids encoding given by the superpixel shape.
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Table 4: We investigate various alternatives on where to add our positional encoding in
relation to the fusion operation applied by the DPT decoder [4]. Additionally, we explore
the use of a nearest downsampling strategy as an alternative to the default bilinear one.

Model #Superpixels Compact. Params mIoU
(M) (%)

DPT-S [4] - - 37.0 38.1
DPT-S+PEL (after fusion) 600 100 37.0 38.2
DPT-S+PEL (nearest) 600 100 37.0 38.4
DPT-S+PEL (before fusion) 600 100 37.0 38.9

Table 5: Results in terms of mean IoU on ADE20K [8] and Cityscapes [2] using SegFormer-
B0 [7], for different compactness values, with and without our positional encoding. The
number of superpixels is fixed to 16,000.

Model Compact. Params ADE20K Cityscapes
(M) mIoU mIoU

SegFormer-B0 [7] - 3.8 37.5 71.4
SegFormer-B0+PEL 1 3.8 37.9 71.1
SegFormer-B0+PEL 10 3.8 38.1 71.5
SegFormer-B0+PEL 20 3.8 38.2 71.8
SegFormer-B0+PEL 30 3.8 38.0 71.2

Furthermore, we also explore a nearest neighbor downsampling strategy as an alternative
to bilinear interpolation for generating PEL (to match the shape of each single f i). However,
we observe inferior performance with this approach, as indicated in the third row of Table 4.

3.3 Impact of superpixel compactness variation

In Table 5, we apply our positional encoding to the SegFormer decoder [7] and examine
how variation in the superpixels compactness value impacts model performance. In this ex-
periment, we utilize the lightweight B0 version of SegFormer with an input resolution of
512×512 and a fixed number of 16,000 superpixels. The results demonstrate that the mIoU
improves as the compactness value increases from 1 to 20. However, we observe a decline
in performance when the compactness is further increased to a value of 30. This can be
explained by the fact that excessively increasing the compactness of the superpixels around
their centroid makes them similar to polygonal patches with regular edges, invalidating the
priors of the boundaries between distinct semantic classes. Qualitative evidence of this phe-
nomenon is depicted in Figure 1 of the main paper.

3.4 Impact of superpixel number on learnable superpixel-PE

In Section 4.1 of the main paper, we introduced LearnPE, a learnable superpixel encoding
approach that assigns a unique learnable vector to each superpixel, allowing the model to
adaptively learn the optimal encoding during training. Building upon this, in this section,
we investigate the relationship between the number of superpixels, the model size, and the
mIoU performance, as presented in Table 6.
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Table 6: Relationship between the number of superpixels, the model size, and the mIoU
performance in the case of our learnable superpixel-based positional encoding (LearnPEL).

Model #Superpixel Params ADE20K Cityscapes
(M) mIoU mIoU

SegFormer-B0 [7] - 3.8 (+0.0) 37.5 71.4
+LearnPEL 200 3.8 (+0.0) 37.8 71.7
+LearnPEL 600 3.9 (+0.1) 38.1 71.9
+LearnPEL 4,096 4.8 (+1.0) 38.3 72.2
+LearnPEL 16,384 8.0 (+4.2) 38.0 71.7
+LearnPEL 20,000 8.9 (+5.1) 37.7 71.1
+LearnPEL 24,000 9.9 (+6.1) 37.6 71.1
+LearnPEL 32,000 12.0 (+8.2) 37.7 71.9

As the number of superpixels increases, we observe a corresponding growth in the num-
ber of parameters, surpassing three times the size of the baseline model. However, despite the
increase in model capacity, the mIoU performance tends to decrease, albeit still surpassing
the baseline. This suggests a potential trade-off between model complexity and performance
when utilizing LearnPE. It is worth noting that while a larger model may possess more ca-
pacity, the heightened complexity may undermine the advantages of leveraging the priors
provided by the superpixels, potentially leading to overfitting.

4 Additional qualitative results
Figure 1 showcases supplementary qualitative results obtained from ADE20K (first two
columns) and Cityscapes (last two columns), illustrating the performance of existing Vision
Transformers with and without our superpixel positional encoding strategy. Specifically, we
present results for the DPT-B, SegFormer-B0, SegFormer-B4, and SETR-T models, display-
ing two samples for each model. Enhanced semantic segmentation outcomes are denoted by
yellow boxes, indicating improved performance.
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Figure 1: Sample results obtained employing DPT-B, SegFormer-B0, SegFormer-B4, and
SETR-T, with and without our superpixel positional encoding strategy.
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