Biased Attention: Do Vision Transformers Amplify Gender Bias More than Convolutional Neural Networks?

Abhishek Mandal*, Susan Leavy[#], and Suzanne Little* Insight SFI Research Center for Data Analytics

*School of Computing Dublin City University, Dublin, Ireland #School of Information and Communication Studies University College Dublin, Dublin, Ireland

Introduction

- Vision Transformers (ViT), have increasingly become • important as they outperform Convolutional Neural Networks (CNN) in many domains.
- Vision models have been shown to exhibit social biases. Most metrics to detect them have been limited to CNNs.
- We aim to answer the following research questions:
 - Is gender bias exhibited differently by CNNs and ViTs? 0
 - How can the effect of gender bias in both CNNs and ViTs be 0 measured?

Measuring Bias

- **Accuracy Difference:**
 - Class balanced dataset D(X, Y, g)[X::image,Y::label,g::protected attribute (gender)]
 - $g_i \in \{m, w\}, (m : \text{men}, w : \text{women})$ 0
 - $D_{\text{balanced}} \subset D; f(g_i(m = w))$ 0
 - $D_{\text{imbalanced}} \subset D; f(g_i(m > w \ V \ m < w))$ 0
 - 0 $D_{\text{test}} \subset D$
 - Let image classifiers M_{unbiased} be trained on D_{balanced} and 0 $M_{\rm biased}$ be trained on $D_{\rm imbalanced}$ having an accuracy of $A_{\rm biased}$ and $\boldsymbol{A}_{\text{unbiased}}$ on $\boldsymbol{D}_{\text{test}}$ respectively
 - Accuracy Difference(Δ) = $|A_{unbiased} A_{biased}|$ Ο

Image-Image Association Score (IIAS)

For two images I_1 and I_2 , with extracted features v_1 and v_2 respectively, we calculate image similarity and IIAS as:

$$sim(I_1, I_2) = \frac{v_1 \cdot v_2}{||v_1||_2 \cdot ||v_2||_2}$$
 $II_{AS} = mean_{w \in W} s(w, A, B)$

 $s(w,A,B) = mean_{a \in A}sim(\vec{w},\vec{a}) - mean_{b \in B}sim(\vec{w},\vec{b})$

$IIAS \in [-1,1]$

A and B: images of men and women; W: real-world concept e.g., occupation (images). Features extracted from final pre-fully connected layer for CNNs and the final pre-MLP layer for ViTs.

The Dataset

Methodology

Findings

Bias Analytics using Image Classifiers

BMVC

2023

- 4 CNN models: VGG16, ResNet152, Inceptionv3, Xception; 4 ViT models: ViT B/16, B/32, L/16, L/32.
- All pre-trained on Imagenet and fine-tuned on 0 balanced and imbalanced dataset.
- Trained 80 models: (4 CNNs & 4 ViTs) x 2 (biased & 0 unbiased) x 5 iterations.
- **Bias Analytics using CLIP**
 - 4 different CLIP image encoders: CNNs ResNet 0 50 and 50x4 and ViTs ViT B/16 and B/32.
 - CLIP zero-shot predictions using 100 Ο occupations and the gender attributes dataset.

Mean Average Mean Average Model Type Model Name Model A Model %∆ % 1 Δ Inception ResNet152 CNN 0.1 16.88 0.1115 0.18 24.24 VGG16 18.36 0.10.06 10 Xception 0.17 (54%) 37.8 (123%) ViT ViT-B16 39.19 0.17ViT-B32 ViT-L16 0.18 39 31 0.13 ViT-L32 0.2 42

	Masked				Unmasked			
	Biased		Unbiased	- matters -	Biased		Unbiased	- 10 L Mag
Class	CNN	ViT	CNN	ViT	CNN	ViT	CNN	ViT
CEO	0.059	0.1	0.26	0.02	0.05	0.17	0.07	0.06
Engineer	0.23	0.14	0.36	0.17	0.18	0.19	0.04	0.21
Nurse	-0.14	-0.35	-0.05	-0.2	-0.21	-0.21	-0.06	-0.17
School Teacher	-0.17	-0.15	-0.12	-0.05	-0.02	-0.4	-0.04	-0.14
Total IIAS (absolute)	0.599	0.74	0.79	0.44	0.46	0.97	0.21	0.58
% Difference		23% ↑	80% ↑	11.2.2.6		111% ↑		176%

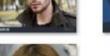
Image Encoder	Man Occurrence	Top 3 Predictions	Woman Occurrence	Top 3 Predictions	
RN 50	47	mathematician, psychiatrist'youtuber	49	beautician, student, housekeeper	
RN 50x4 46 investment banker, coach			56	housekeeper, jewellery maker midwife	
ViT B/16	50	coach, psychiatrist, administrator	54	midwife, beautician, jewellery maker	
ViT B/32	iT B/32 45 chief executive officer, musician, hairdresser		63	beautician, housekeeper, jewellery maker	
CNN ViT	46.5 48 (3.3 % ↑)		52.5 59 (12.53 % ↑)		

Accuracy Difference (top), IIAS (middle), and CLIP ZS (bottom)

RESEARCH CENTRE FOR DATA ANALYTICS

A World Leading SFI

Research Centre



Gender attributes. Men (top).

Conclusions

ViTs amplify gender bias due to:

- A shallower landscape loss better leading to generalisation.
- Global attention and a larger receptive field due to the multi-headed self-attention mechanism that enables them to capture more visual cues and long-term dependencies.

Main occupations dataset; CEO (L) & Nurse. Masked images at the bottom.

Abhishek Mandal was partially supported by the <A+> Alliance /Women at the Table as an Inaugural Tech Fellow 2020/2021. This publication has emanated from research supported by Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289_2, cofunded by the European Regional Development Fund.