

Multi-Target Domain Adaptation with Class-Wise Attribute Transfer in Semantic Segmentation

¹Changjae Kim, ²Seunghun Lee, ²Sunghoon Im ¹ LG Electronics ²DGIST, Korea

BMVC 2023

Problem

Multi-target domain adaptation (MTDA) aims to adapt a single model from a labeled source domain to multiple unlabeled target domains.

Motivation

- One of the crucial aspects in Multi-Target Domain Adaptation is attribute alignment, given the varying image distribution across domains.
- However, previous methods [1, 2] only globally align attributes and do not achieve class-wise alignment, which has limited their performance.
- Therefore, we propose a method for class-wise attribute transfer from source domain to multiple target domains.

Proposed Method

(b) High-precision pseudo labeling (HPP)

(c) Class-wise attribute transfer

Ablation Study

➤ Effectiveness of HPP

> Attribute transfer comparison

		mIoU		
Method	C	I	M	Avg.
Color Transfer	33.8	37.4	42.1	37.8
DRANet	37.3	39.3	43.2	39.9
MTDT-Net	41.4	40.6	44.1	42.0
Ours	42.7	41.3	45.3	43.1

> HPP label accuracy

	Cityscapes	IDD	Mapillary	Avg.
$\hat{Y}^{NN}_{\mathcal{T}_k}$	0.59	0.57	0.55	0.57
$\hat{Y}_{\mathcal{T}_k}^{Pred}$ + BARS	0.72	0.66	0.73	0.70
Ours	0.85	0.85	0.88	0.86

Results

Domain Transfer Results

Multi-Target Domain Adaptation Results

	Mathad		mIoU		mIoU		Mathad	mIoU			mIoU
	Method	C	I	M	Avg.		Method	С	I	M	Avg.
$\overset{G}{C,I}$	ADVENT	70.0	64.8	-	67.4	G C, I	CCL	45.0	46.0	-	45.5
	MTKT	70.4	65.9	-	68.2		ADAS	45.8	46.3	-	46.1
	ADAS	75.4	66.9	-	71.2		Ours	46.5	46.9	-	46.7
	Ours	74.4	69.2	-	71.8		CCL	45.1	-	48.8	46.8
G→ C, M	ADVENT	69.1	-	68.7	68.9	, C, L	ADAS	45.8	-	49.2	47.5
	MTKT	71.1	-	70.8	70.9		Ours	47.1	-	48.9	48.0
	ADAS	75.3	-	72.6	73.9	G L, M	CCL	-	44.5	46.4	45.5
	Ours	74.8	-	73.8	74.3		ADAS	-	46.1	47.6	46.9
$\overset{\text{G}\rightarrow}{\text{C, I, M}}$	ADVENT	69.8	65.6	68.0	67.8		Ours	-	45.7	48.7	47.2
	MTKT	70.4	65.9	71.1	69.1	G_{\downarrow}	CCL	46.7	47.0	49.9	47.9
	ADAS	74.9	66.7	72.2	71.3		ADAS	46.9	47.7	51.1	48.6
	Ours	74.0	70.3	74.3	72.9	00	Ours	49.3	48.8	50.2	49.4
						-					

Reference

- [1] Isobe, T. et al. "Multi-target domain adaptation with collaborative consistency learning." CVPR21.
- [2] Lee, S. et al. "A direct adaptation strategy for multi-target domain adaptive semantic segmentation." CVPR22.
- [3] Saporta, A. et al., "Multi-target adversarial frameworks for domain adaptation in semantic segmentation." CVPR21.
- [4] Lee, S. et al., "DRANet: Disentangling Representation and Adaptation Networks for Unsupervised Cross-Domain Adaptation." CVPR21
- [5] Reinhard, E. et al., "Color transfer between images." CGA00