Log RGB Images Provide Invariance to Intensity and Color Balance Variation for Convolutional Networks

Bruce A. Maxwell, Sumegha Singhania, Heather Fryling, Haonan Sun Northeastern University

Reflection follows the laws of physics

Log RGB histogram Note consistent lines with clear separation for each material

Standard processing for human viewing breaks the physical laws

sRGB histogram

Log sRGB histogram Note curving of the body reflection lines in both graphs

Clean relationships between pixels become color and image-specific

log RGB histogram

linear RGB histogram

log sRGB histogram

sRGB histogram

Network

Network designed to be simple and trainable from scratch without memorization

Image Model:

I = Image

A = Ambient Illuminant

R = Body Reflectance

L = Direct Illuminant

 $\gamma =$ Strength of L $\in [0, 1]$

$$I = AR + \gamma LR = R(A + \gamma L)$$

$$\log I = \log \left[R(A + \gamma L) \right] = \log R + \log(A + \gamma L)$$

Differences in log space measure ratios instead of differences, making them consistent features across illumination conditions

Databases:

1118 Images captured in RAW format, 561 with a Swedish Fish® box

All images processed using rawPy library into linear RGB data and resized to min edge = 64 JPG/sRGB Database: sRGB transformation, saved as JPG images using OpenCV defaults

Linear Database: saved as 16-bit TIFF images

Log Database: natural log transformation, saved as 32-bit EXR images

Results

(1) Unmodified Train Set	JPEG	Linear RGB	Log RGB
Original Test Set	89.0% / 0.292	90% / 0.455	91% / 0.272
Random Color Balance	$62\% \ / \ 0.815$	$75\% \ / \ 1.163$	89% / 0.318
Random Intensity	73% / 0.669	$82\% \ / \ 0.748$	94% / 0.247
Both	69% / 0.750	$74\% \ / \ 1.400$	89% / 0.292
Validation	88.7% / 0.312	93.6 % / 0.263	87.7% / 0.321
(2) Fixed Modified Train Set	JPEG	Linear RGB	Log RGB
Original Test Set	65% / 0.683	87% / 0.514	90% / 0.285
Random Color Balance	$78\% \ / \ 0.455$	$85\% \ / \ 0.782$	92% / 0.216
Random Intensity	71% / 0.681	$92\% \ / \ 0.392$	93% / 0.192
Both	78% / 0.444	88% / 0.684	93% / 0.193
Validation	89.0% / 0.283	95.6% / 0.156	95.0% / 0.179
(3) Dynamic Train Set	JPEG	Linear RGB	Log RGB
Original Test Set	82% / 0.527	87% / 0.320	94% / 0.197
Random Color Balance	56% / 1.090	$84\% \ / \ 0.339$	92% / 0.227
Random Intensity	55% / 1.119	$85\% \ / \ 0.357$	92% / 0.210
Both	$55\% \ / \ 1.122$	$85\% \ / \ 0.324$	92% / 0.213
Validation	90% / 0.361	91.7 % / 0.313	87.3% / 0.344