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Background Experiment
* Color constancy: estimate the light source color from each raw RGB image.  |INTEL-TAU database
 Machine learning performs better than image-statistics-based methods. » 3 camera models, ~1600 — 2300 different scenes each for training
 Camera bias: learning methods might fail when used on a different camera. » 2 cameras for training, 1 for testing (same-scene images incl. in testing)

» MCC images in 10 different lights for obtaining H for all camera pairs

Current Solutions: 2x - 3x Larger Networks * Homographic-corrected color constancy

» C,qf is a chosen reference camera
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Problem Definitions 0 | | | |
. SIIE C5 FFCC FC4 CLCC
e SIIE & C5 use most of the FLOPS to solve camera bias, not color constancy. = Original 474 ) 89 3.4 5 19 197
* |sthere a simpler solution if some camera characterization data is available? - Homography 3.02 2 21 2 52 2 07 1.94
» Something like the CCM: obtained in the camera manufacturing process, Homography + Simplified  3.01 2.36
light weighted, and fast processing. H—J %—/
* Can SIIE and C5 be further improved and/or simplified? Cross-camera methods  Single-camera methods

* SIIE and C5 are improved significantly by homography.

» They only learned to partially solve the camera bias issue.

Proposed Solution: “Color Homography” [4]
* Not only improve, homography can replace a large part of SIIE and C5.

. hir his his1[Ry/Gy]1 [Rs/Gy . Homograp-wy also improves other single-camera algorithms.

—|hz1  hyz hy3||B{/G{| = |B,/G, » FC4 [6] and CLCC [7] are huge networks (6.5G — 7.3G FLOPS).
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Compensating scalar / h3y hzp has. 1 1 L 1 . » Strong data augmentation might already help solving camera bias.
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* Optimizing H
» Macbeth ColorChecker captured by Camera 1&2 under the same light(s)
» Example: INTEL-TAU database [5]
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t Conclusion & Key Messages
Camera 1 = Canon 5DSR Camera 2 = Sony IMX135 when using more than 1 lights ¢ . . . .
Spectralight llluminant A SpectraLight Illuminant A * Algorithms claimed to be “cross-camera” only solve the issue partially.
* Color homography is a simpler and better way to solve camera bias.
* Using H on real scenes  Aggressive data augmentation used in large networks might also help, but

there is risk of not covering all camera models (TBC in future work).
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