
Current Solutions: 2x - 3x Larger Networks
• SIIE [1]

• C5 [2]
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Background
• Color constancy: estimate the light source color from each raw RGB image.
• Machine learning performs better than image-statistics-based methods.
• Camera bias: learning methods might fail when used on a different camera.
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Problem Definitions 
• SIIE & C5 use most of the FLOPS to solve camera bias, not color constancy.
• Is there a simpler solution if some camera characterization data is available? 

Ø Something like the CCM: obtained in the camera manufacturing process, 
light weighted, and fast processing. 

• Can SIIE and C5 be further improved and/or simplified? 

Proposed Solution: “Color Homography” [4] 

• Optimizing !
Ø Macbeth ColorChecker captured by Camera 1&2 under the same light(s)
Ø Example: INTEL-TAU database [5] 

• Using ! on real scenes
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Experiment
• INTEL-TAU database

Ø 3 camera models, ~1600 – 2300 different scenes each for training
Ø 2 cameras for training, 1 for testing (same-scene images incl. in testing)
Ø MCC images in 10 different lights for obtaining ! for all camera pairs

• Homographic-corrected color constancy
Ø !!"# is a chosen reference camera
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Conclusion & Key Messages
• Algorithms claimed to be “cross-camera” only solve the issue partially.
• Color homography is a simpler and better way to solve camera bias.
• Aggressive data augmentation used in large networks might also help, but

there is risk of not covering all camera models (TBC in future work).

*The work was performed when Jun Hu worked at Meta and during Yi-Tun’s internship with Meta.
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• SIIE and C5 are improved significantly by homography.
Ø They only learned to partially solve the camera bias issue.

• Not only improve, homography can replace a large part of SIIE and C5.
• Homography also improves other single-camera algorithms.

Ø FC4 [6] and CLCC [7] are huge networks (6.5G – 7.3G FLOPS).
Ø Strong data augmentation might already help solving camera bias.
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Results

Error 8.56° 5.12° 2.67° 0.91° 1.03°
FFCC SIIE C5 FC4 CLCC

1.08°0.83°0.87°1.57°0.55°
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